endothelial cell adhesion
Recently Published Documents


TOTAL DOCUMENTS

835
(FIVE YEARS 53)

H-INDEX

78
(FIVE YEARS 4)

Author(s):  
Danying Liao ◽  
Jesse Sundlov ◽  
Jieqing Zhu ◽  
Heng Mei ◽  
Yu Hu ◽  
...  

Objective: PECAM-1 (platelet endothelial cell adhesion molecule 1) is a 130 kDa member of the immunoglobulin (Ig) gene superfamily that is expressed on the surfaces of platelets and leukocytes and concentrated at the intercellular junctions of confluent endothelial cell monolayers. PECAM-1 Ig domains 1 and 2 (IgD1 and IgD2) engage in homophilic interactions that support a host of vascular functions, including support of leukocyte transendothelial migration and the maintenance of endothelial junctional integrity. The recently solved crystal structure of PECAM-1 IgD1 and IgD2 revealed a number of intermolecular interfaces predicted to play important roles in stabilizing PECAM-1/PECAM-1 homophilic interactions and in formation and maintenance of endothelial cell-cell contacts. We sought to determine whether the protein interfaces implicated in the crystal structure reflect physiologically important interactions. Approach and Results: We assessed the impact of single amino acid substitutions at the interfaces between opposing PECAM-1 molecules on homophilic binding and endothelial cell function. Substitution of key residues within the IgD1-IgD1 and IgD1-IgD2 interfaces but not those within the smaller IgD2-IgD2 interface, markedly disrupted PECAM-1 homophilic binding and its downstream effector functions, including the ability of PECAM-1 to localize at endothelial cell-cell borders, mediate the formation of endothelial tubes, and restore endothelial barrier integrity. Conclusions: Taken together, these results validate the recently described PECAM-1 IgD1/IgD2 crystal structure by demonstrating that specific residues visualized within the IgD1-IgD1 and IgD1-IgD2 interfaces of opposing molecules in the crystal are required for functionally important homophilic interactions. This information can now be exploited to modulate functions of PECAM-1 in vivo.


2021 ◽  
Vol 50 (1) ◽  
pp. 539-539
Author(s):  
Samuel Sherratt ◽  
Peter Libby ◽  
Deepak Bhatt ◽  
Hazem Dawoud ◽  
Tadeusz Malinski ◽  
...  

2021 ◽  
Vol 22 (22) ◽  
pp. 12417
Author(s):  
Stefano Barbera ◽  
Luisa Raucci ◽  
Roberta Lugano ◽  
Gian Marco Tosi ◽  
Anna Dimberg ◽  
...  

During angiogenesis, cell adhesion molecules expressed on the endothelial cell surface promote the growth and survival of newly forming vessels. Hence, elucidation of the signaling pathways activated by cell-to-matrix adhesion may assist in the discovery of new targets to be used in antiangiogenic therapy. In proliferating endothelial cells, the single-pass transmembrane glycoprotein CD93 has recently emerged as an important endothelial cell adhesion molecule regulating vascular maturation. In this study, we unveil a signaling pathway triggered by CD93 that regulates actin cytoskeletal dynamics responsible of endothelial cell adhesion. We show that the Src-dependent phosphorylation of CD93 and the adaptor protein Cbl leads to the recruitment of Crk, which works as a downstream integrator in the CD93-mediated signaling. Moreover, confocal microscopy analysis of FRET-based biosensors shows that CD93 drives the coordinated activation of Rac1 and RhoA at the cell edge of spreading cells, thus promoting the establishment of cell polarity and adhesion required for cell motility.


2021 ◽  
Vol 22 (17) ◽  
pp. 9611
Author(s):  
Natalia Marcinczyk ◽  
Tomasz Misztal ◽  
Anna Gromotowicz-Poplawska ◽  
Agnieszka Zebrowska ◽  
Tomasz Rusak ◽  
...  

In our previous study, we introduced the platelet endothelial cell adhesion molecule 1 (PECAM-1)/thrombus ratio, which is a parameter indicating the proportion of PECAM-1 in laser-induced thrombi in mice. Because PECAM-1 is an antithrombotic molecule, the higher the PECAM-1/thrombus ratio, the less activated the platelets. In this study, we used an extracorporeal model of thrombosis (flow chamber model) to verify its usefulness in the assessment of the PECAM-1/thrombus ratio in animal and human studies. Using the lipopolysaccharide (LPS)-induced inflammation model, we also evaluated whether the PECAM-1/thrombus ratio determined in the flow chamber (without endothelium) differed from that calculated in laser-induced thrombosis (with endothelium). We observed that acetylsalicylic acid (ASA) decreased the area of the thrombus while increasing the PECAM-1/thrombus ratio in healthy mice and humans in a dose-dependent manner. In LPS-treated mice, the PECAM-1/thrombus ratio decreased as the dose of ASA increased in both thrombosis models, but the direction of change in the thrombus area was inconsistent. Our study demonstrates that the PECAM-1/thrombus ratio can more accurately describe the platelet activation status than commonly used parameters such as the thrombus area, and, hence, it can be used in both human and animal studies.


Angiogenesis ◽  
2021 ◽  
Author(s):  
Joana Amado-Azevedo ◽  
Anne-Marieke D. van Stalborch ◽  
Erik T. Valent ◽  
Kalim Nawaz ◽  
Jan van Bezu ◽  
...  

Author(s):  
Babs Van de Voorde ◽  
Lara Benmeridja ◽  
Elena-Diana Giol ◽  
Louis Van der Meeren ◽  
Lana Van Damme ◽  
...  

2021 ◽  
Vol 17 (7) ◽  
pp. e1008603
Author(s):  
Pan Pan ◽  
Geng Li ◽  
Miaomiao Shen ◽  
Zhenyang Yu ◽  
Weiwei Ge ◽  
...  

Dengue virus (DENV) is a mosquito-borne pathogen that causes a spectrum of diseases including life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Vascular leakage is a common clinical crisis in DHF/DSS patients and highly associated with increased endothelial permeability. The presence of vascular leakage causes hypotension, circulatory failure, and disseminated intravascular coagulation as the disease progresses of DHF/DSS patients, which can lead to the death of patients. However, the mechanisms by which DENV infection caused the vascular leakage are not fully understood. This study reveals a distinct mechanism by which DENV induces endothelial permeability and vascular leakage in human endothelial cells and mice tissues. We initially show that DENV2 promotes the matrix metalloproteinase-9 (MMP-9) expression and secretion in DHF patients’ sera, peripheral blood mononuclear cells (PBMCs), and macrophages. This study further reveals that DENV non-structural protein 1 (NS1) induces MMP-9 expression through activating the nuclear factor κB (NF-κB) signaling pathway. Additionally, NS1 facilitates the MMP-9 enzymatic activity, which alters the adhesion and tight junction and vascular leakage in human endothelial cells and mouse tissues. Moreover, NS1 recruits MMP-9 to interact with β-catenin and Zona occludens protein-1/2 (ZO-1 and ZO-2) and to degrade the important adhesion and tight junction proteins, thereby inducing endothelial hyperpermeability and vascular leakage in human endothelial cells and mouse tissues. Thus, we reveal that DENV NS1 and MMP-9 cooperatively induce vascular leakage by impairing endothelial cell adhesion and tight junction, and suggest that MMP-9 may serve as a potential target for the treatment of hypovolemia in DSS/DHF patients.


Sign in / Sign up

Export Citation Format

Share Document