Necrolytic migratory erythema without glucagonoma: the role of dietary essential fatty acids

1991 ◽  
Vol 125 (5) ◽  
pp. 460-462 ◽  
Author(s):  
SHARON BLACKFORD ◽  
S. WRIGHT ◽  
D.L. ROBERTS
Lipids ◽  
1991 ◽  
Vol 26 (1) ◽  
pp. 37-45 ◽  
Author(s):  
P. E. Wainwright ◽  
Y. S. Huang ◽  
B. Bulman-Fleming ◽  
D. E. Mills ◽  
P. Redden ◽  
...  

1993 ◽  
Vol 265 (2) ◽  
pp. R414-R419 ◽  
Author(s):  
T. Xia ◽  
N. Mostafa ◽  
B. G. Bhat ◽  
G. L. Florant ◽  
R. A. Coleman

In the suckling rat, chick embryo, and hibernating marmot, fatty acids provide the major source of energy, and despite the high rate of hepatic beta-oxidation, these animals selectively retain long-chain polyunsaturated derivatives of C18:2n-6 and C18:3n-3. To determine whether the hepatic microsomal activity monoacylglycerol acyltransferase (MGAT) (EC 2.3.1.22) could provide a mechanism to selectively acylate monoacylglycerols that contain essential fatty acids, we tested the ability of MGAT activity from each of the three species to acylate sn-2-monoC18:1-, sn-2-monoC18:2-, sn-2-monoC18:3-, and sn-2-monoC20:4-glycerols. Hepatic MGAT activity acylated sn-2-monoC18:3-glycerol and sn-2-monoC18:2-glycerol in preference to sn-2-monoC18:1-glycerol in each of the three different lipolytic animals. MGAT's acyl group specificity could not be explained by invoking differences in membrane fluidity because the apparent affinity for sn-2-monoC20:4-glycerol was not increased. Further, sn-2-monoC18:3-glycerol remained a preferred substrate under assay conditions when both the C18:3 and C18:1 species were present in equal amounts. As would be predicted in the presence of high activity of a selective MGAT, the hepatic glycerolipids from neonatal rats showed increases in dienoic, trienoic, and C22:6 fatty acids and relative decreases in monoenoic, saturated, and C20:4 fatty acids. We hypothesize that, during lipolysis, the reacylation of sn-2-monoacylglycerols by MGAT may provide a mechanism by which essential fatty acids are retained within specific tissues.


2007 ◽  
Vol 7 ◽  
pp. 1440-1462 ◽  
Author(s):  
Gerhard Bannenberg ◽  
Makoto Arita ◽  
Charles N. Serhan

Controlled resolution or the physiologic resolution of a well-orchestrated inflammatory response at the tissue level is essential to return to homeostasis. A comprehensive understanding of the cellular and molecular events that control the termination of acute inflammation is needed in molecular terms given the widely held view that aberrant inflammation underlies many common diseases. This review focuses on recent advances in the understanding of the role of arachidonic acid and ω-3 polyunsaturated fatty acids (PUFA)–derived lipid mediators in regulating the resolution of inflammation. Using a functional lipidomic approach employing LC-MS-MS–based informatics, recent studies, reviewed herein, uncovered new families of local-acting chemical mediators actively biosynthesized during the resolution phase from the essential fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). These new families of local chemical mediators are generated endogenously in exudates collected during the resolution phase, and were coined resolvins and protectins because specific members of these novel chemical families control both the duration and magnitude of inflammation in animal models of complex diseases. Recent advances on the biosynthesis, receptors, and actions of these novel anti-inflammatory and proresolving lipid mediators are reviewed with the aim to bring to attention the important role of specific lipid mediators as endogenous agonists in inflammation resolution.


1961 ◽  
Vol 38 (6) ◽  
pp. 297-301 ◽  
Author(s):  
G. A. Dhopeshwarkar ◽  
James F. Mead

1984 ◽  
Vol 70 (5) ◽  
pp. 656 ◽  
Author(s):  
B. Salafsky ◽  
Yu-Sheng Wang ◽  
Alan C. Fusco ◽  
Jill Antonacci

Sign in / Sign up

Export Citation Format

Share Document