scholarly journals The contrast in upper mantle shear-wave velocity between the east european platform and tectonic Europe obtained with genetic algorithm inversion of rayleigh-wave group dispersion

1995 ◽  
Vol 123 (1) ◽  
pp. 169-182 ◽  
Author(s):  
Anthony Lomax ◽  
Roel Snieder
2021 ◽  
Author(s):  
shindy rosalia ◽  
Sri Widiyantoro ◽  
Phil R. Cummins ◽  
Tedi Yudistira ◽  
Andri Dian Nugraha ◽  
...  

Abstract This paper presents the depth inversion of Rayleigh wave group velocity to obtain an S-wave velocity model from seismic ambient noise cross-correlation in the western part of Java, Indonesia. This study utilizes the vertical component data of a temporary seismograph network deployed in 2016, which was used in a previous study to estimate fundamental mode Rayleigh wave group velocity maps. In this study, the Neighbourhood Algorithm was applied to invert the Rayleigh wave group velocities into 1D shear-wave velocity (Vs) profiles, which were then interpolated to produce a high-resolution, pseudo-3D Vs model. These tomographic images of Vs extend to ~20 km depth and show a pronounced NE-SW contrast of low and high Vs in the depth range 1-5 km that correlates well with the Bouguer anomaly map. We interpret the low Vs in the northeastern part of the study area as associated with alluvial and volcanic products from the Sunda Shelf and modern volcanic arc, whereas the high Vs in the southwestern part is associated with volcanic arc products from earlier episodes of subduction. We also obtained the depth of the northern Java basin, which is in the range of 5-7 km, and the Garut Basin, which extends to 5 km depth. For greater depths, Vs gradually increases throughout western Java, which reflects the crystalline basement.


Author(s):  
T Yudistira ◽  
J-P Metaxian ◽  
M Putriastuti ◽  
S Widiyantoro ◽  
N Rawlinson ◽  
...  

Summary Mt. Merapi, which lies just north of the city of Yogyakarta in Java, Indonesia, is one of the most active and dangerous volcanoes in the world. Thanks to its subduction zone setting, Mt Merapi is a stratovolcano, and rises to an elevation of 2968 m above sea level. It stands at the intersection of two volcanic lineaments, Ungaran–Telomoyo–Merbabu–Merapi (UTMM) and Lawu–Merapi–Sumbing–Sindoro–Slamet, which are oriented north-south and west-east, respectively. Although it has been the subject of many geophysical studies, Mt Merapi's underlying magmatic plumbing system is still not well understood. Here, we present the results of an ambient seismic noise tomography study, which comprise of a series of Rayleigh wave group velocity maps and a 3-D shear wave velocity model of the Merapi-Merbabu complex. A total of 10 months of continuous data (October 2013–July 2014) recorded by a network of 46 broadband seismometers were used. We computed and stacked daily cross-correlations from every pair of simultaneously recording stations to obtain the corresponding inter-station empirical Green's functions. Surface wave dispersion information was extracted from the cross-correlations using the multiple filtering technique, which provided us with an estimate of Rayleigh wave group velocity as a function of period. The group velocity maps for periods 3–12 s were then inverted to obtain shear wave velocity structure using the neighbourhood algorithm. From these results, we observe a dominant high velocity anomaly underlying Mt. Merapi and Mt. Merbabu with a strike of 152° N, which we suggest is evidence of old lava dating from the UTMM double-chain volcanic arc which formed Merbabu and Old Merapi. We also identify a low velocity anomaly on the southwest flank of Merapi which we interpret to be an active magmatic intrusion.


2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Shindy Rosalia ◽  
Sri Widiyantoro ◽  
Phil R. Cummins ◽  
Tedi Yudistira ◽  
Andri Dian Nugraha ◽  
...  

AbstractThis paper presents the depth inversion of Rayleigh wave group velocity to obtain an S-wave velocity model from seismic ambient noise cross-correlation in western Java, Indonesia. This study utilizes the vertical component data of a temporary seismograph network deployed in 2016, which was used in a previous study to estimate fundamental mode Rayleigh wave group velocity maps. In this study, the Neighborhood Algorithm was applied to invert the Rayleigh wave group velocities into 1D shear-wave velocity (Vs) profiles, which were then interpolated to produce a high-resolution, pseudo-3D Vs model. These tomographic images of Vs extend to ~ 20 km depth and show a pronounced NE-SW contrast of low and high Vs in the depth range 1–5 km that correlates well with the Bouguer anomaly map. We interpret the low Vs in the northeastern part of the study area as associated with alluvial and volcanic products from the Sunda Shelf and modern volcanic arc, whereas the high Vs in the southwestern part is associated with volcanic arc products from earlier episodes of subduction. We also obtained the depth of the northern Java Basin, which is in the range of 5–6 km, and the Garut Basin, which extends to 5 km depth. For greater depths, Vs gradually increases throughout western Java, which reflects the crystalline basement. This study provides estimates of the shallow crustal Vs structure underneath West Java with higher resolution than previous tomographic studies, which could be useful for supporting future earthquake studies in the region.


2013 ◽  
Vol 300-301 ◽  
pp. 955-958
Author(s):  
Pei Hsun Tsai ◽  
Chih Chun Lou

In the paper the shear wave velocity profile is studied using the MASW test. The experimental dispersion curves were obtained from the signal process proposed by Ryden. Theoretical dispersion curve can be constructed by thin layer stiffness matrix method. A real-parameter genetic algorithm is required to minimize the error between the theoretical and experimental dispersion curves. To reduce the error of experimental and theoretical dispersion curve using real-parameter genetic algorithm is feasible. The results show that the soil layers of the study area can be modeled as a sandy fill overlaid on an underlying half space. Test results also show that the asymptotes at high frequencies of the fundamental mode approach the phase velocities for the fill of 190 m/s. The depths of weathered bedrock estimating from dispersion curves match well with that of borehole data.


Sign in / Sign up

Export Citation Format

Share Document