velocity anomaly
Recently Published Documents


TOTAL DOCUMENTS

177
(FIVE YEARS 66)

H-INDEX

22
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Junjiang Zhu ◽  
Sanzhong Li ◽  
Huilin Xing ◽  
Changsheng Wang ◽  
Guoming Yang ◽  
...  

ABSTRACT We analyzed 37 large oceanic intraplate earthquakes (M >6). The largest (M >7) are mainly concentrated under the Indian Ocean. Moderate events (6 < M < 7) are sparsely distributed under the Indian Ocean and other oceans where lithospheric ages are between 90 Ma and 20 Ma. Oceanic intraplate events related to mantle plumes or hotspots are rare, though low-velocity anomalies beneath hotspots are a common feature. Tomographic cross sections for Indian Ocean areas with large intraplate earthquakes indicate strong heterogeneity in the mantle. These earthquakes are explained by shallow stress variations caused by a combination of tectonic forces including slab-pull, ridge-push, drag by mantle flow, plume-push, and buoyancy forces as a consequence of low-velocity anomalies in the mantle. Oceanic intraplate seismicity in the Indian Ocean is related to the large-scale, low-velocity anomaly structure around the Ninety East Ridge.


2021 ◽  
Author(s):  
Seyed Hossein Abrehdari ◽  
Jon K. Karapetyan ◽  
Habib Rahimi ◽  
Eduard Gyodakyan

Abstract In order to identify and describe Hot-Cold spots inside the earth based on increasing and decreasing wave velocity anomalies, this paper attempts to generate the first 2D tomographic maps of Rayleigh surface wave velocity dispersion curves, by using ~1200 local-regional earthquake data and ~30000 vertical (Z) components of earthquake data waveform energy with magnitude M≥4 from 1999 to 2018 in a periods range of 5 to 70 seconds and a grid spacing of 0.2º×0.5º for a depth of ~200 km. To conduct this, a generalized 2D linear inversion procedure developed by Yanovskaya and Ditmar has been applied to construct the first 2D Rayleigh tomography velocity maps in order to understand better the regional tectonic activities in the enigmatic ongoing collision-compressed edge zone of the Eurasian-Arabic plates. In this study, we assumed that low-velocity (slow) region with dark red shade is hot spot and high-velocity (fast) region with dark blue-green-yellow is a cold spot. In short and medium periods were determined the number of 15 and 2 hot spots with a depth of 7 to 108 km, respectively. In long-periods and a depth of ~200 km, most part of the area study has covered by low-velocity anomaly.


2021 ◽  
Author(s):  
Joao Duarte ◽  
Nicolas Riel ◽  
Chiara Civiero ◽  
Sonia Silva ◽  
Filipe Rosas ◽  
...  

Abstract The Earth’s surface is constantly being recycled by plate tectonics. Subduction of oceanic lithosphere and delamination of continental lithosphere constitute the two most important mechanisms by which the Earth’s lithosphere is recycled into the mantle. Delamination or detachment in continental regions typically occurs below mountain belts due to a weight excess of overthickened lithospheric mantle, which detaches from overlying lighter crust, aided by the existence of weak layers within the continental lithosphere. Oceanic lithosphere is classically pictured as a rigid plate with a strong core that does not allow for delamination to occur. Here, we propose that active delamination of oceanic lithosphere occurs offshore Southwest Iberia. The process is assisted by the existence of a lithospheric serpentinized layer that allows the lower part of the lithosphere to decouple from the overlying crust. Tomography images reveal a sub-lithospheric high-velocity anomaly below this region, which we interpret as a delaminating block of old oceanic lithosphere. We present numerical models showing that for a geological setting mimicking offshore Southwest Iberia delamination of oceanic lithosphere is possible and may herald subduction initiation, which is a long-unsolved problem in the theory of plate tectonics. We further propose that such oceanic delamination is responsible for the highest-magnitude earthquakes in Europe, including the M8.5-8.7 Great Lisbon Earthquake of 1755 and the M7.9 San Vincente earthquake of 1969. In particular, our numerical models, in combination with calculations on seismic potential, provide a solution for the instrumentally recorded 1969 event below the flat Horseshoe abyssal plain, away from mapped tectonics faults. Delamination of old oceanic lithosphere near passive margins constitutes a new class of subduction initiation mechanisms, with fundamental implications for the dynamics of the Wilson cycle.


2021 ◽  
Author(s):  
Zeinab Jeddi ◽  
Lars Ottemöller ◽  
Mathilde Sørensen ◽  
Sara Rezaei ◽  
Steven Gibbons ◽  
...  

The mid-ocean ridge system is the main source of earthquakes within the Arctic region. The earthquakes are recorded on the permanent land-based stations in the region, although smaller earthquakes remain undetected. In this study, we make use of three Ocean Bottom Seismographs (OBSs) that were deployed offshore western Svalbard, along the spreading ridges. The OBS arrival times were used to relocate the regional seismicity using a Bayesian approach, which resulted in a significant improvement with tighter clustering around the spreading ridge. We also extended the regional magnitude scales for the northern Atlantic region for OBSs by computing site correction terms. Besides location and magnitude improvement, the OBS network was able to detect hundreds of earthquakes, mostly with magnitude below Mw=3, including a swarm activity at the Molloy Deep. Our offshore observations provide further evidence of a low velocity anomaly offshore Svalbard, at the northern tip of Knipovich ridge, that was previously seen in full waveform inversion. We conclude that even a single permanent OBS near the ridge would make a significant difference to earthquake catalogs and their interpretation.


2021 ◽  
Vol 873 (1) ◽  
pp. 012068
Author(s):  
M I Sulaiman ◽  
P A Subakti ◽  
Haolia ◽  
D Y Fatimah ◽  
I Madrinovella ◽  
...  

Abstract The tectonic system of Eastern Indonesia is controlled by several major and minor plates, such as Indo-Australian, Australian plate, and Pacific plates. This area is known for its complexity, and high seismic activity. This study tries to image the complex structures beneath this region by employing regional events data and seismic tomography methods. We used five years of regional events catalog provided by the Indonesian Agency of Meteorology, Climatology, and Geophysics. We have sorted 7336 events recorded between 120° – 136° longitude and 0° – 13°(-) latitude consisting of 46446 P and 15467 S wave arrival data. Relocated hypocenter map shows a better constrain location on seismicity along outer Bandar Arc. A dipping pattern of seismicity is seen that is going deeper to the Banda Sea. The seismicity map also images a steep angle pattern of seismicity that could be related to the subduction slab roll-back model at North of Wetar island. Interestingly, we spotted a seismicity gap in West Seram that could be linked with slab tear zone. The checker-board test suggests a proper resolution is still reliable to a depth of 200 km with a less interpretable model at a depth of 300 km. P-wave tomographic models image the high velocity dipping down going slab. The Banda slab is seen to subduct from south Timor Island to the north, from east Tanimbar and Aru Island to west part, and from north Seram Island to south. We observed the down-going slab meet from all directions at about 300 km beneath the Banda sea. P wave tomogram also shows the Timor Island slab has a steeper dip that agrees with the seismicity pattern. Near the Seram island, we identify a low-velocity anomaly zone infiltrate the Banda slab beneath the shallow part of West Seram, which was previously interpreted as slab tear zone. This study also noticed a higher velocity tomogram model at North of Wetar island that might indicate a back-arc thrust. Lastly, a low-velocity band is also exposed at a shallow depth close to the volcano chain along that Banda volcanic arc.


2021 ◽  
Vol 873 (1) ◽  
pp. 012073
Author(s):  
Muhammad Yusuf Ibrahim ◽  
Normansyah ◽  
Wien Lestari ◽  
Mariyanto Mariyanto

Abstract The pull-up effect is the condition of lithology elevated in seismic imaging because of rapid seismic wave propagation through carbonate build-up on it. Pull-up effect conditions can lead to misinterpretation, so it needs to be corrected until the actual geological conditions are obtained. This research was conducted in the JAX-field working area of PT Pertamina Hulu Energi ONWJ. The target reservoirs of this study are in the Main (Upper Cibulakan) Formation under the Carbonate Parigi Formation. The reflectors of the target reservoirs show pull-up effect in time domain seismic data. Thus, building a velocity model for velocity anomaly correction is needed to reduce uncertainty for structure maps and oil in place calculation. The method of correcting the pull-up effect in this study uses three variations of the velocity model: variation structurally controlled model, variation RMS velocity with well control, variation calibrated RMS velocities model. The three variations of the velocity model result can correct the pull-up effect on JAX-Field. Velocity model with variation RMS velocity with well control had the lowest error with 17,31 feet average of depth difference with actual depth from well. Based on three velocity models, the value of original oil in place on the JAX-32 reservoir surface had a range of 59,14-84,59 mmbo, while on the JAX-35A surface has a range of 27,77-31,23 mmbo. These values can be considered in reserve calculation sensitivity.


2021 ◽  
Vol 228 (2) ◽  
pp. 744-754
Author(s):  
Arushi Saxena ◽  
Charles Adam Langston

SUMMARY Identifying upper-mantle discontinuities in the Central and Eastern US is crucial for verifying models of lithospheric thinning and a low-velocity anomaly structure beneath the Mississippi Embayment. In this study, S-wave receiver functions (SRFs) were used to detect lithospheric boundaries in the embayment region. The viability of SRFs in detecting seismic boundaries was tested before computing them using the earthquake data. A careful analysis using a stochastic noise and coda model on the synthetics revealed that a negative velocity contrast could be detected with certainty at low to moderate noise levels after stacking. A total of 31 518 SRFs from 688 earthquakes recorded at 174 seismic stations including the Northern Embayment Lithospheric Experiment, EarthScope Transportable Array and other permanent networks were used in this study. Common depth point stacks of the SRFs in 1° × 1° bins indicated a continuous and broad S-to-P converted phase (Sp) arrival corresponding to a negative velocity contrast at depths between 50 and 100 km. The observed negative Sp phase is interpreted as a mid-lithospheric discontinuity (MLD), and several possible origins of the velocity drop corresponding to the MLD are explored. After quantitative analysis, a combination of temperature, water content and melt content variations are attributed to explain the observed MLD in this study. The observations and interpretations in this study support the previous claims of an MLD in the Central and Eastern US and provide a possible mechanism for its origin.


2021 ◽  
Author(s):  
Chuansong He

Abstract A large amount of high-quality teleseismic data is used for common conversion point (CCP) stacking of receiver functions in the Longmenshan area. The results show that a large-scale high-velocity anomaly or lithospheric delamination can completely destroy upper mantle discontinuities or erase the phase boundary of olivine, which is a very important finding and can be used to assess stagnant slabs in the mantle transition zone globally. The deepening region of the 660 km discontinuity beneath the Songpan-Ganzi terrane might indicate that the large-scale high-velocity anomaly in the mantle transition zone is a cold domain and can affect the topography of upper mantle discontinuities.


2021 ◽  
Vol 13 (14) ◽  
pp. 2691
Author(s):  
Hoonyol Lee ◽  
Heejeong Seo ◽  
Hyangsun Han ◽  
Hyeontae Ju ◽  
Joohan Lee

Regional changes in the flow velocity of Antarctic glaciers can affect the ice sheet mass balance and formation of surface crevasses. The velocity anomaly of a glacier can be detected using the Double-Differential Interferometric Synthetic Aperture Radar (DDInSAR) technique that removes the constant displacement in two Differential Interferometric SAR (DInSAR) images at different times and shows only the temporally variable displacement. In this study, two circular-shaped ice-velocity anomalies in Campbell Glacier, East Antarctica, were analyzed by using 13 DDInSAR images generated from COSMO-SkyMED one-day tandem DInSAR images in 2010–2011. The topography of the ice surface and ice bed were obtained from the helicopter-borne Ice Penetrating Radar (IPR) surveys in 2016–2017. Denoted as A and B, the velocity anomalies were in circular shapes with radii of ~800 m, located 14.7 km (A) and 11.3 km (B) upstream from the grounding line of the Campbell Glacier. Velocity anomalies were up to ~1 cm/day for A and ~5 cm/day for B. To investigate the cause of the two velocity anomalies, the ice surface and bed profiles derived from the IPR survey crossing the anomalies were analyzed. The two anomalies lay over a bed hill along the glacial valley where stick-slip and pressure melting can occur, resulting in temporal variation of ice velocity. The bright radar reflection and flat hydraulic head at the ice bed of A observed in the IPR-derived radargram strongly suggested the existence of basal water in a form of reservoir or film, which caused smaller friction and the reduced variation of stick-slip motion compared to B. Crevasses began to appear at B due to tensile stress at the top of the hill and the fast flow downstream. The sporadic shift of the location of anomalies suggests complex pressure melting and transportation of the basal water over the bed hill.


Sign in / Sign up

Export Citation Format

Share Document