Oxygen effects on methane production and oxidation in humid tropical forest soils

2005 ◽  
Vol 11 (8) ◽  
pp. 1283-1297 ◽  
Author(s):  
Yit Arn Teh ◽  
Whendee L. Silver ◽  
Mark E. Conrad
2019 ◽  
Author(s):  
Yang Lin ◽  
Avner Gross ◽  
Christine S. O'Connell ◽  
Whendee L. Silver

Abstract. The strong phosphorus (P) sorption capacity of iron (Fe) and aluminum (Al) minerals in highly weathered, acidic soils of humid tropical forests is generally assumed to be an important driver of P limitation to plants and microbial activity in these ecosystems. Humid tropical forest soils often experience fluctuating redox conditions that reduce Fe and raise pH. It is commonly thought that Fe reduction generally decreases the capacity and strength of P sorption. Here we examined the effects of 14-day oxic and anoxic incubations on soil P sorption dynamics in humid tropical forest soils from Puerto Rico. Contrary to the conventional belief, soil P sorption capacity did not decrease under anoxic conditions, suggesting that soil minerals remain strong P sinks even under reducing conditions. Sorption of P occurred very rapidly in these soils, with at least 60 % of the added P disappearing from the solution within six hours. Estimated P sorption capacities were one order of magnitude higher than the soil total P contents. However, the strength of P sorption under reducing conditions was weaker, as indicated by the increased solubility of sorbed P in NaHCO3 solution. Our results show that highly weathered soil minerals can retain P even under anoxic conditions, where it might otherwise be susceptible to leaching. Anoxic events can also potentially increase P bioavailability by decreasing the strength, rather than the capacity, of P sorption. These results improve our understanding of the redox effects on biogeochemical cycling in tropical forests.


2015 ◽  
Vol 21 (7) ◽  
pp. 2818-2828 ◽  
Author(s):  
Steven J. Hall ◽  
Whendee L. Silver ◽  
Vitaliy I. Timokhin ◽  
Kenneth E. Hammel

2020 ◽  
Vol 17 (1) ◽  
pp. 89-101 ◽  
Author(s):  
Yang Lin ◽  
Avner Gross ◽  
Christine S. O'Connell ◽  
Whendee L. Silver

Abstract. The strong phosphorus (P) sorption capacity of iron (Fe) and aluminum (Al) minerals in highly weathered, acidic soils of humid tropical forests is generally assumed to be an important driver of P limitation to plants and microbial activity in these ecosystems. Humid tropical forest soils often experience fluctuating redox conditions that reduce Fe and raise pH. It is commonly thought that Fe reduction generally decreases the capacity and strength of P sorption. Here we examined the effects of 14 d oxic and anoxic incubations on soil P sorption dynamics in humid tropical forest soils from Puerto Rico. Contrary to the conventional belief, soil P sorption capacity did not decrease under anoxic conditions, suggesting that soil minerals remain strong P sinks even under reducing conditions. Sorption of P occurred very rapidly in these soils, with at least 60 % of the added P disappearing from the solution within 6 h. Estimated P sorption capacities were much higher, often by an order of magnitude, than the soil total P contents. However, the strength of P sorption under reducing conditions was weaker, as indicated by the increased solubility of sorbed P in NaHCO3 solution. Our results show that highly weathered soil minerals can retain P even under anoxic conditions, where it might otherwise be susceptible to leaching. Anoxic events can also potentially increase P bioavailability by decreasing the strength, rather than the capacity, of P sorption. These results improve our understanding of the redox effects on biogeochemical cycling in tropical forests.


Sign in / Sign up

Export Citation Format

Share Document