Near-zero recent carbon accumulation in a bog with high nitrogen deposition in SW Sweden

2008 ◽  
Vol 14 (9) ◽  
pp. 2152-2165 ◽  
Author(s):  
URBAN GUNNARSSON ◽  
LAINE BORESJÖ BRONGE ◽  
HÅKAN RYDIN ◽  
MIKAEL OHLSON
2011 ◽  
Vol 18 (3) ◽  
pp. 1163-1172 ◽  
Author(s):  
Luca Bragazza ◽  
Alexandre Buttler ◽  
Jonathan Habermacher ◽  
Lisa Brancaleoni ◽  
Renato Gerdol ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yang Wang ◽  
Jingshuang Liu ◽  
Longxue He ◽  
Jingxin Dou ◽  
Hongmei Zhao

The effects of nitrogen deposition (N-deposition) on the carbon dynamics in typicalCalamagrostis angustifoliawetland of Sanjiang Plain were studied by a pot-culture experiment during two continuous plant growing seasons. Elevated atmospheric N-deposition caused significant increases in the aboveground net primary production and root biomass; moreover, a preferential partition of carbon to root was also observed. Different soil carbon fractions gained due to elevated N-deposition and their response intensities followed the sequence of labile carbon > dissolved organic carbon > microbial biomass carbon, and the interaction between N-deposition and flooded condition facilitated the release of different carbon fractions. Positive correlations were found between CO2and CH4fluxes and liable carbon contents with N-deposition, and flooded condition also tended to facilitate CH4fluxes and to inhibit the CO2fluxes with N-deposition. The increases in soil carbon fractions occurring in the nitrogen treatments were significantly correlated with increases in root, aboveground parts, total biomass, and their carbon uptake. Our results suggested that N-deposition could enhance the contents of active carbon fractions in soil system and carbon accumulation in plant of the freshwater wetlands.


2019 ◽  
Vol 203 ◽  
pp. 114-120 ◽  
Author(s):  
Ouping Deng ◽  
Shirong Zhang ◽  
Liangji Deng ◽  
Ting Lan ◽  
Ling Luo ◽  
...  

2006 ◽  
Vol 3 (5) ◽  
pp. 317 ◽  
Author(s):  
Ole Hertel ◽  
Carsten Ambelas Skjøth ◽  
Per Løfstrøm ◽  
Camilla Geels ◽  
Lise Marie Frohn ◽  
...  

Abstract. Local ammonia emissions from agricultural activities are often associated with high nitrogen deposition in the close vicinity of the sources. High nitrogen (N) inputs may significantly affect the local ecosystems. Over a longer term, high loads may change the composition of the ecosystems, leading to a general decrease in local biodiversity. In Europe there is currently a significant focus on the impact of atmospheric N load on local ecosystems among environmental managers and policy makers. Model tools designed for application in N deposition assessment and aimed for use in the regulation of anthropogenic nitrogen emissions are, therefore, under development in many European countries. The aim of this paper is to present a review of the current understanding and modelling parameterizations of atmospheric N deposition. A special focus is on the development of operational tools for use in environmental assessment and regulation related to agricultural ammonia emissions. For the often large number of environmental impact assessments needed to be carried out by local environmental managers there is, furthermore, a need for simple and fast model systems. These systems must capture the most important aspects of dispersion and deposition of N in the nearby environment of farms with animal production. The paper includes a discussion on the demands on the models applied in environmental assessment and regulation and how these demands are fulfilled in current state-of-the-art models.


Sign in / Sign up

Export Citation Format

Share Document