scholarly journals Maturation pathway of nisin and other lantibiotics: post-translationally modified antimicrobial peptides exported by Gram-positive bacteria

1995 ◽  
Vol 17 (3) ◽  
pp. 427-437 ◽  
Author(s):  
Willem M. de Vos ◽  
Oscar P. Kuipers ◽  
Jan Roelof van der Meer ◽  
Roland J. Siezen
2020 ◽  
Vol 11 ◽  
Author(s):  
Lucas Assoni ◽  
Barbara Milani ◽  
Marianna Ribeiro Carvalho ◽  
Lucas Natanael Nepomuceno ◽  
Natalha Tedeschi Waz ◽  
...  

2019 ◽  
Author(s):  
Carolin M Kobras ◽  
Hannah Piepenbreier ◽  
Jennifer Emenegger ◽  
Andre Sim ◽  
Georg Fritz ◽  
...  

ABSTRACTResistance against cell wall-active antimicrobial peptides in bacteria is often mediated by transporters. In low GC-content Gram-positive bacteria, a wide-spread type of such transporters are the BceAB-like systems, which frequently provide a high level of resistance against peptide antibiotics that target intermediates of the lipid II cycle of cell wall synthesis. How a transporter can offer protection from drugs that are active on the cell surface, however, has presented researchers with a conundrum. Multiple theories have been discussed, ranging from removal of the peptides from the membrane, internalisation of the drug for degradation, to removal of the cellular target rather than the drug itself. To resolve this much-debated question, we here investigated the mode of action of the transporter BceAB of Bacillus subtilis. We show that it does not inactivate or import its substrate antibiotic bacitracin. Moreover, we present evidence that the critical factor driving transport activity is not the drug itself, but instead the concentration of drug-target complexes in the cell. Our results, together with previously reported findings, lead us to propose that BceAB-type transporters act by transiently freeing lipid II cycle intermediates from the inhibitory grip of antimicrobial peptides, and thus provide resistance through target protection of cell wall synthesis. Target protection has so far only been reported for resistance against antibiotics with intracellular targets, such as the ribosome. However, this mechanism offers a plausible explanation for the use of transporters as resistance determinants against cell wall-active antibiotics in Gram-positive bacteria where cell wall synthesis lacks the additional protection of an outer membrane.


2006 ◽  
Vol 50 (8) ◽  
pp. 2666-2672 ◽  
Author(s):  
Shahar Rotem ◽  
Inna Radzishevsky ◽  
Amram Mor

ABSTRACT Antimicrobial peptides are widely believed to exert their effects by nonspecific mechanisms. We assessed the extent to which physicochemical properties can be exploited to promote discriminative activity by manipulating the N-terminal sequence of the 13-mer dermaseptin derivative K4-S4(1-13) (P). Inhibitory activity determined in culture media against 16 strains of bacteria showed that when its hydrophobicity and charge were changed, P became predominantly active against either gram-positive or gram-negative bacteria. Thus, conjugation of various aminoacyl-lysin moieties (e.g., aminohexyl-K-P) led to inactivity against gram-positive bacteria (MIC50 > 50 μM) but potent activity against gram-negative bacteria (MIC50, 6.2 μM). Conversely, conjugation of equivalent acyls to the substituted analog M4-S4(1-13) (e.g., hexyl-M4-P) led to inactivity against gram-negative bacteria (MIC50 > 50 μM) but potent activity against gram-positive bacteria (MIC50, 3.1 μM). Surface plasmon resonance experiments, used to investigate peptides' binding properties to lipopolysaccharide-containing idealized phospholipid membranes, suggest that although the acylated derivatives have increased lipophilic properties with parallel antibacterial behavior, hydrophobic derivatives are prevented from reaching the cytoplasmic membranes of gram-negative bacteria. Moreover, unlike modifications that enhanced the activity against gram-positive bacteria, which also enhanced hemolysis, we found that modifications that enhanced activity against gram-negative bacteria generally reduced hemolysis. Thus, compared with the clinically tested peptides MSI-78 and IB-367, the dermaseptin derivative aminohexyl-K-P performed similarly in terms of potency and bactericidal kinetics but was significantly more selective in terms of discrimination between bacteria and human erythrocytes. Overall, the data suggest that similar strategies maybe useful to derive potent and safe compounds from known antimicrobial peptides.


2013 ◽  
Vol 1828 (3) ◽  
pp. 944-955 ◽  
Author(s):  
Inês M. Torcato ◽  
Yen-Hua Huang ◽  
Henri G. Franquelim ◽  
Diana Gaspar ◽  
David J. Craik ◽  
...  

2006 ◽  
Vol 74 (7) ◽  
pp. 4164-4171 ◽  
Author(s):  
Francesca Fabretti ◽  
Christian Theilacker ◽  
Lucilla Baldassarri ◽  
Zbigniew Kaczynski ◽  
Andrea Kropec ◽  
...  

ABSTRACT Enterococcus faecalis is among the predominant causes of nosocomial infections. Surface molecules like d-alanine lipoteichoic acid (LTA) perform several functions in gram-positive bacteria, such as maintenance of cationic homeostasis and modulation of autolytic activities. The aim of the present study was to evaluate the effect of d-alanine esters of teichoic acids on biofilm production and adhesion, autolysis, antimicrobial peptide sensitivity, and opsonic killing. A deletion mutant of the dltA gene was created in a clinical E. faecalis isolate. The absence of d-alanine in the LTA of the dltA deletion mutant was confirmed by nuclear magnetic resonance spectroscopy. The wild-type strain and the deletion mutant did not show any significant differences in growth curve, morphology, or autolysis. However, the mutant produced significantly less biofilm when grown in the presence of 1% glucose (51.1% compared to that of the wild type); adhesion to eukaryotic cells was diminished. The mutant absorbed 71.1% of the opsonic antibodies, while absorption with the wild type resulted in a 93.2% reduction in killing. Sensitivity to several cationic antimicrobial peptides (polymyxin B, colistin, and nisin) was considerably increased in the mutant strain, confirming similar results from other studies of gram-positive bacteria. Our data suggest that the absence of d-alanine in LTA plays a role in environmental interactions, probably by modulating the net negative charge of the bacterial cell surface, and therefore it may be involved in the pathogenesis of this organism.


2016 ◽  
Vol 9 (3) ◽  
pp. 59 ◽  
Author(s):  
Nermina Malanovic ◽  
Karl Lohner

Sign in / Sign up

Export Citation Format

Share Document