scholarly journals Luminosity and stellar mass functions of discs and spheroids in the SDSS and the supermassive black hole mass function

2007 ◽  
Vol 379 (3) ◽  
pp. 841-866 ◽  
Author(s):  
A. J. Benson ◽  
D. Dzanovic ◽  
C. S. Frenk ◽  
R. Sharples
2019 ◽  
Vol 485 (3) ◽  
pp. 4413-4422 ◽  
Author(s):  
Daniel J D’Orazio ◽  
Abraham Loeb ◽  
James Guillochon

ABSTRACT The rate of tidal disruption flares (TDFs) per mass of the disrupting black hole encodes information on the present-day mass function (PDMF) of stars in the clusters surrounding super massive black holes. We explore how the shape of the TDF rate with black hole mass can constrain the PDMF, with only weak dependence on black hole spin. We show that existing data can marginally constrain the minimum and maximum masses of stars in the cluster, and the high-mass end of the PDMF slope, as well as the overall TDF rate. With $\mathcal {O}(100)$ TDFs expected to be identified with the Zwicky Transient Facility, the overall rate can be highly constrained, but still with only marginal constraints on the PDMF. However, if ${\lesssim } 10 {{\ \rm per\ cent}}$ of the TDFs expected to be found by LSST over a decade ($\mathcal {O}(10^3)$ TDFs) are identified, then precise and accurate estimates can be made for the minimum stellar mass (within a factor of 2) and the average slope of the high-mass PDMF (to within $\mathcal {O}(10{{\ \rm per\ cent}})$) in nuclear star clusters. This technique could be adapted in the future to probe, in addition to the PDMF, the local black hole mass function and possibly the massive black hole binary population.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Brandon C. Kelly ◽  
Andrea Merloni

The black hole mass function of supermassive black holes describes the evolution of the distribution of black hole mass. It is one of the primary empirical tools available for mapping the growth of supermassive black holes and for constraining theoretical models of their evolution. In this paper, we discuss methods for estimating the black hole mass function, including their advantages and disadvantages. We also review the results of using these methods for estimating the mass function of both active and inactive black holes. In addition, we review current theoretical models for the growth of supermassive black holes that predict the black hole mass function. We conclude with a discussion of directions for future research which will lead to improvement in both empirical and theoretical determinations of the mass function of supermassive black holes.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 311-313
Author(s):  
Fazeel Mahmood Khan ◽  
Peter Berczik ◽  
Andreas Just

AbstractIf able to coalesce in a Hubble time, Supermassive Black hole (SMBH) binaries are very promising sources of gravitational waves (GW). Our earlier studies have shown that SMBH binaries coalesce in post-merger galactic nuclei having triaxial or axisymmetric geometry in a few billion years. In this study, we model the complete evolution of SMBH binaries formed as a result of galaxy mergers having central density profiles that vary from shallow to very steep including a stellar mass function. Energy and angular momentum loss due to GW emission is taken into account using the post-Newtonian approximation. We carry out ten such simulations for each central density profile. The eccentricity of the SMBH binaries remain very high in shallow cusps and decrease systematically for steeper cusps. The coalescence times range from 0.6 to 1.5 Gyr with shorter times for steeper profiles. Typical coalescence times less than a Gyr strengthen our expectation that SMBH binaries should be very promising sources of GW radiation over a wide redshift range.


2009 ◽  
Vol 400 (3) ◽  
pp. 1451-1460 ◽  
Author(s):  
Marina Vika ◽  
Simon P. Driver ◽  
Alister W. Graham ◽  
Jochen Liske

Sign in / Sign up

Export Citation Format

Share Document