Two AP2 family genes, SUPERNUMERARY BRACT (SNB) and OsINDETERMINATE SPIKELET 1 (OsIDS1), synergistically control inflorescence architecture and floral meristem establishment in rice

2011 ◽  
Vol 69 (3) ◽  
pp. 445-461 ◽  
Author(s):  
Dong-Yeon Lee ◽  
Gynheung An
Development ◽  
1998 ◽  
Vol 125 (4) ◽  
pp. 733-742 ◽  
Author(s):  
E. Souer ◽  
A. van der Krol ◽  
D. Kloos ◽  
C. Spelt ◽  
M. Bliek ◽  
...  

A main determinant of inflorescence architecture is the site where floral meristems are initiated. We show that in wild-type Petunia bifurcation of the inflorescence meristem yields two meristems of approximately equal size. One terminates into a floral meristem and the other maintains its inflorescence identity. By random transposon mutagenesis we have generated two mutants in which the architecture of the inflorescence is altered. In the extra petals- (exp) mutant the inflorescence terminates with the formation of a single terminal flower. Phenotypic analysis showed that exp is required for the bifurcation of inflorescence meristems. In contrast, the aberrant leaf and flower- (alf) mutant is affected in the specification of floral meristem identity while the branching pattern of the inflorescence remains unaltered. A weak alf allele was identified that, after bifurcation of the inflorescence meristem, yields a ‘floral’ meristem with partial inflorescence characteristics. By analysing independent transposon dTph1 insertion alleles we show that the alf locus encodes the Petunia FLORICAULA/LEAFY homolog. In situ hybridisation shows that alf is expressed in the floral meristem and also in the vegetative meristem. Differences and similarities between these Petunia mutants and mutations affecting inflorescence architecture in other species will be discussed.


2010 ◽  
Vol 63 (6) ◽  
pp. 974-989 ◽  
Author(s):  
Mingli Xu ◽  
Tieqiang Hu ◽  
Sarah M. McKim ◽  
Jhadeswar Murmu ◽  
George W. Haughn ◽  
...  
Keyword(s):  

1969 ◽  
Vol 47 (1) ◽  
pp. 133-140 ◽  
Author(s):  
Siti Raswati Soetiarto ◽  
Ernest Ball

The vegetative apex was a low dome consisting of two layers of tunica surmounting a very small corpus. Foliar primordia originated as periclines in the flanks of T2. The transition apex became first a steep cone and then a hemisphere. All floral primordia—the two bracts, the two sepals, the several whorls of petals, the several whorls of stamens, and the carpels—originated in the manner of leaves, as periclines in T2 on the flanks of the apex. All appendages, including carpels, were therefore lateral. In the early transition, the apex had a brief stage in which there were three tunica layers, but the inner one was lost with the onset of the sepals. The bracts and the first sepal continued the normal positions of primordia for the vegetative phyllotaxy of 3/8, but with the second sepal, this phyllotaxy was lost, and petals, stamens, and carpels were produced in whorls. While leaves, bracts, sepals, and petals were produced in acropetal sequence, stamens were produced in basipetal sequence, and carpels appeared simultaneously. After carpels were formed, the rest of the floral apex underwent a brief period of expansion growth, achieving a diameter comparable to that of a shoot apex, but its substance was eventually incorporated into the carpel margins, which later produced the ovules. This agrees with the determinate nature of the floral apex. During the development of the first series of floral organs, the floral apex underwent continued increase in area, finally achieving a diameter several times that of the vegetative shoot apex. Its size and form were such that they were compared to those of some inflorescence apices. After development of the first series of floral organs, the subjacent tissues to the floral meristem underwent divisions and elongation at right angles to the axis, causing at first a flattening of the meristem, and eventually a cup-shaped form, with the carpels attached in the bottom of a bowl. The mature flower was thus perigynous, but this development arose quite differently from the perigyny as it is known from ontogenetic studies in the Rosaceae.


2007 ◽  
Vol 66 (3) ◽  
pp. 277-288 ◽  
Author(s):  
Roberto Mattioli ◽  
Daniele Marchese ◽  
Simone D’Angeli ◽  
Maria Maddalena Altamura ◽  
Paolo Costantino ◽  
...  

2001 ◽  
Vol 162 (2) ◽  
pp. 327-334 ◽  
Author(s):  
Tia‐Lynn Ashman ◽  
Jennifer Pacyna ◽  
Christy Diefenderfer ◽  
Tamika Leftwich

2011 ◽  
Vol 351 (1) ◽  
pp. 208-216 ◽  
Author(s):  
Shinichiro Yamaki ◽  
Yasuo Nagato ◽  
Nori Kurata ◽  
Ken-Ichi Nonomura

Sign in / Sign up

Export Citation Format

Share Document