inflorescence development
Recently Published Documents


TOTAL DOCUMENTS

341
(FIVE YEARS 74)

H-INDEX

30
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Josh Strable ◽  
Erica Unger-Wallace ◽  
Alejandro Aragón-Raygoza ◽  
Sarah Briggs ◽  
Erik Vollbrecht

Grass inflorescences support floral structures that each bear a single grain, where variation in branch architecture directly impacts yield. The maize RAMOSA1 (ZmRA1) transcription factor acts as a key regulator of inflorescence development by imposing branch meristem determinacy. Here, we show RA1 transcripts accumulate in boundary domains adjacent to spikelet meristems in Sorghum bicolor (Sb) and Setaria viridis (Sv) inflorescences similar as in the developing maize tassel and ear. To evaluate functional conservation of syntenic RA1 orthologs and promoter cis sequences in maize, sorghum and setaria, we utilized interspecies gene transfer and assayed genetic complementation in a common inbred background by quantifying recovery of normal branching in highly ramified ra1-R mutants. A ZmRA1 transgene that includes endogenous upstream and downstream flanking sequences recovered normal tassel and ear branching in ra1-R. Interspecies expression of two transgene variants of the SbRA1 locus, modeled as the entire endogenous tandem duplication or just the non-frameshifted downstream copy, complemented ra1-R branching defects and induced novel fasciation and branch patterns. The SvRA1 locus lacks conserved, upstream noncoding cis sequences found in maize and sorghum; interspecies expression of an SvRA1 transgene did not or only partially recovered normal inflorescence forms. Driving expression of the SvRA1 coding region by the ZmRA1 upstream region, however, recovered normal inflorescence morphology in ra1-R. These data leveraging interspecies gene transfer suggest that cis-encoded temporal regulation of RA1 expression is a key factor in modulating branch meristem determinacy that ultimately impacts grass inflorescence architecture.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiaotian Wang ◽  
Zhiqiang Liu ◽  
Shuai Sun ◽  
Jianxin Wu ◽  
Ren Li ◽  
...  

AbstractSelection for favorable inflorescence architecture to improve yield is one of the crucial targets in crop breeding. Different tomato varieties require distinct inflorescence-branching structures to enhance productivity. While a few important genes for tomato inflorescence-branching development have been identified, the regulatory mechanism underlying inflorescence branching is still unclear. Here, we confirmed that SISTER OF TM3 (STM3), a homolog of Arabidopsis SOC1, is a major positive regulatory factor of tomato inflorescence architecture by map-based cloning. High expression levels of STM3 underlie the highly inflorescence-branching phenotype in ST024. STM3 is expressed in both vegetative and reproductive meristematic tissues and in leaf primordia and leaves, indicative of its function in flowering time and inflorescence-branching development. Transcriptome analysis shows that several floral development-related genes are affected by STM3 mutation. Among them, FRUITFULL1 (FUL1) is downregulated in stm3cr mutants, and its promoter is bound by STM3 by ChIP-qPCR analysis. EMSA and dual-luciferase reporter assays further confirmed that STM3 could directly bind the promoter region to activate FUL1 expression. Mutation of FUL1 could partially restore inflorescence-branching phenotypes caused by high STM3 expression in ST024. Our findings provide insights into the molecular and genetic mechanisms underlying inflorescence development in tomato.


Author(s):  
Kishor C. Dahal ◽  
Surya P Bhattarai ◽  
Kerry B. Walsh ◽  
David J. Midmore ◽  
David Oag

2021 ◽  
Vol 22 (22) ◽  
pp. 12548
Author(s):  
Yahui Yang ◽  
Huanhuan Yang ◽  
Yinxiao Tan ◽  
Tingting Zhao ◽  
Xiangyang Xu ◽  
...  

Inflorescences are the main factor affecting fruit yield. The quantity and quality of inflorescences are closely related to fruit quality and yield. The presence of compound inflorescences in cherry tomatoes is well established, and it has been discovered by chance that compound racemes also exist in tomatoes. To explore the formation of compound inflorescences in tomato, transcriptome sequencing was performed on Moneymaker (MM) and Compound Inflorescence (CI) plants. In-florescences were collected in three periods (early, middle and late) in three replicates, for a total of 18 samples. Data analysis showed that the DEGs were most enriched in metabolic pathways and plant hormone signal transduction pathways. The DEGs were also enriched in the cell cycle pathway, photosynthesis pathway, carbon metabolism pathway and circadian rhythm pathway. We found that the FALSIFLORA (FA), COMPOUND INFLORESCENCE (S) and ANANTHA (AN) genes were involved in compound inflorescence development, not only revealing novel genes but also providing a rich theoretical basis for compound inflorescence development.


Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 485
Author(s):  
Elahe Javadi Asayesh ◽  
Sasan Aliniaeifard ◽  
Naser Askari ◽  
Mahmood Reza Roozban ◽  
Mohammadhadi Sobhani ◽  
...  

In protected cultivation, increasing the light level via supplementary lighting (SL) is critical to improve external quality, especially in periods with low light availability. Despite wide applications, the effect of light quality remains understated. In this study, the effect of SL quality and nutrient solution electrical conductivity (EC) on growth and flowering of three bromeliad species was investigated. Treatments included solar light, and this supplemented with R90B10 [90% red (R) and 10% blue (B)], R80B20 (80% R and 20% B), and R70B30 (70% R and 30% B). These were combined with an EC of 1 and 2 dS m-l. Irrespective of the light treatment, the higher EC promoted growth, inflorescence emergence, and development in Aechmea fasciata (Lindl.) Baker, whereas adverse effects were noted in Guzmania and Vriesea. The higher EC-induced negative effect in Guzmania and Vriesea was slightly alleviated by SL. With few notable exceptions, SL exerted limited effects on photosynthetic functionality. Depending on the species, SL improved external quality traits. In all species, SL increased root and inflorescence weight and stimulated biomass allocation to generative organs. It also accelerated inflorescence emergence and promoted inflorescence development. In this way, the time to commercial development stage was considerably shortened. These effects were more prominent at R80B20 and R70B30. Under those conditions, for instance, inflorescence emergence occurred 3–5 weeks earlier than in the control, depending on the species. In conclusion, SL with increased B proportion leads to shorter production period owing to faster emergence and improved development of the inflorescence and is recommended for commercial use.


2021 ◽  
Vol 171 ◽  
pp. 113960
Author(s):  
Ajay Kumar ◽  
Rahul Dev Gautam ◽  
Ravi Kumar ◽  
Ramesh Chauhan ◽  
Manish Kumar ◽  
...  

2021 ◽  
Author(s):  
Chuanmei Zhu ◽  
Mathew S Box ◽  
Dhineshkumar Thiruppathi ◽  
Hao Hu ◽  
Yunqing Yu ◽  
...  

Directional transport of auxin is critical for inflorescence and floral development in flowering plants, but the role of auxin influx carriers (AUX1 proteins) has been largely overlooked. Taking advantage of available AUX1 mutants in Setaria viridis and maize, we uncover previously unreported aspects of plant development that are affected by auxin influx, including higher order branches in the inflorescence, stigma branch number, and glume (floral bract) development, and plant fertility. However, disruption of auxin flux does not affect all parts of the plant, with little obvious effect on inflorescence meristem size, time to flowering, and anther morphology. In double mutant studies in maize, disruptions of ZmAUX1 also affect vegetative development. A GFP-tagged construct of SvAUX1 under its native promoter showed that the AUX1 protein localizes to the plasma membrane of outer tissue layers in both roots and inflorescences, and accumulates specifically in inflorescence branch meristems, consistent with the mutant phenotype and expected auxin maxima. RNA-seq analysis finds that most gene expression modules are conserved between mutant and wildtype plants, with only a few hundred genes differentially expressed in spp1 inflorescences. Using CRISPR-Cas9 technology, we disrupted SPP1 and the other four AUX1 homologs in S. viridis. SvAUX1/SPP1 has a larger effect on inflorescence development than the others, although all contribute to plant height, tiller formation, leaf, and root development. The AUX1 importers are thus not fully redundant in S. viridis. Our detailed phenotypic characterization plus a stable GFP-tagged line offer tools for future dissection of the function of auxin influx proteins.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qiang Ning ◽  
Yinan Jian ◽  
Yanfang Du ◽  
Yunfu Li ◽  
Xiaomeng Shen ◽  
...  

AbstractMaize ear size and kernel number differ among lines, however, little is known about the molecular basis of ear length and its impact on kernel number. Here, we characterize a quantitative trait locus, qEL7, to identify a maize gene controlling ear length, flower number and fertility. qEL7 encodes 1-aminocyclopropane-1- carboxylate oxidase2 (ACO2), a gene that functions in the final step of ethylene biosynthesis and is expressed in specific domains in developing inflorescences. Confirmation of qEL7 by gene editing of ZmACO2 leads to a reduction in ethylene production in developing ears, and promotes meristem and flower development, resulting in a ~13.4% increase in grain yield per ear in hybrids lines. Our findings suggest that ethylene serves as a key signal in inflorescence development, affecting spikelet number, floral fertility, ear length and kernel number, and also provide a tool to improve grain productivity by optimizing ethylene levels in maize or in other cereals.


2021 ◽  
Author(s):  
Yuguo Xiao ◽  
Jinyan Guo ◽  
Zhaobin Dong ◽  
Annis Richardson ◽  
Erin Patterson ◽  
...  

Grass inflorescence development is diverse and complex and involves sophisticated but poorly understood interactions of genes regulating branch determinacy and leaf growth. Here, we use a combination of transcript profiling, genetic and phylogenetic analyses to investigate tasselsheath1 (tsh1) and tsh4, two maize genes that simultaneously suppress inflorescence leaf growth and promote branching. We identify a regulatory network of inflorescence leaf suppression that involves the phase change gene tsh4 upstream of tsh1 and the ligule identity gene liguleless2 (lg2). We also find that a series of duplications in the tsh1 gene lineage facilitated its shift from boundary domain in non-grasses to suppressed inflorescence leaves of grasses. Collectively, these results suggest that the boundary domain genes tsh1 and lg2 were recruited to inflorescence leaves where they suppress growth and regulate a non-autonomous signaling center that promotes inflorescence branching, an important component of yield in cereal grasses.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2601
Author(s):  
Manfei Li ◽  
Ran Zhao ◽  
Yanfang Du ◽  
Xiaomeng Shen ◽  
Qiang Ning ◽  
...  

The KERNEL NUMBER PER ROW6 (KNR6)-mediated phosphorylation of an adenosine diphosphate ribosylation factor (Arf) GTPase-activating protein (AGAP) forms a key regulatory module for the numbers of spikelets and kernels in the ear inflorescences of maize (Zea mays L.). However, the action mechanism of the KNR6–AGAP module remains poorly understood. Here, we characterized the AGAP-recruited complex and its roles in maize cellular physiology and agronomically important traits. AGAP and its two interacting Arf GTPase1 (ARF1) members preferentially localized to the Golgi apparatus. The loss-of-function AGAP mutant produced by CRISPR/Cas9 resulted in defective Golgi apparatus with thin and compact cisternae, together with delayed internalization and repressed vesicle agglomeration, leading to defective inflorescences and roots, and dwarfed plants with small leaves. The weak agap mutant was phenotypically similar to knr6, showing short ears with fewer kernels. AGAP interacted with KNR6, and a double mutant produced shorter inflorescence meristems and mature ears than the single agap and knr6 mutants. We hypothesized that the coordinated KNR6–AGAP–ARF1 complex modulates vegetative and reproductive traits by participating in vesicle trafficking in maize. Our findings provide a novel mechanistic insight into the regulation of inflorescence development, and ear length and kernel number, in maize.


Sign in / Sign up

Export Citation Format

Share Document