rice yield
Recently Published Documents


TOTAL DOCUMENTS

1578
(FIVE YEARS 630)

H-INDEX

49
(FIVE YEARS 10)

Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 115
Author(s):  
Sicheng Du ◽  
Zhongxue Zhang ◽  
Tiecheng Li ◽  
Zhongbo Wang ◽  
Xin Zhou ◽  
...  

Understanding the methods leading to rice yield increase is vital for sustainable agricultural development. Improving the harvest index (HI) is an important way to increase rice yield. To explore the effects of different water and nitrogen management modes on the rice HI in the black soil region of Northeast China, a field experiment was conducted in 2019 (Y1) and 2020 (Y2). Two irrigation methods, conventional flooding irrigation (FI) and controlled irrigation (CI), were established in the experiment, and four nitrogen application levels (0 kg/ha, 85 kg/ha, 110 kg/ha, and 135 kg/ha) were set during the entire growth period, named N0, N1, N2, and N3. The dry matter weight and the rice yield at the maturity stage were determined, and the HI was then calculated. The results showed that different irrigation modes and nitrogen application levels had significant effects on the rice HI. Under different irrigation modes with the same nitrogen application level during the two years, the comparison regular of HI was consistent. In Y1 and Y2, the HI of FN0 was 3.36% and 5.02% higher than that of CN0 (p < 0.05), and the HI of CN1 was 0.31% and 2.43% higher than that of FN1 (p > 0.05). The HI under CI was significantly higher than that under FI under N2 and N3 (p < 0.05), the HI of CN2 was 4.21% and 4.97% higher than that of FN2, and the HI of FN3 was 13.12% and 20.34% higher than that of CN3. In addition, during the two-year experiment, the HI first increased and then decreased with an increase in the nitrogen application rate under FI and CI. Under the FI treatments, the HI of N1 was the highest, and that of N2 was the highest under the CI treatments. A variance analysis showed that the irrigation pattern and nitrogen application level had significant interactions on the rice HI (p < 0.01), and the appropriate water and N management mode could increase rice the HI by 26.89%. The experimental results showed that the HI of the 110 kg/ha nitrogen application rate under CI was the highest, reaching 0.574 and 0.572, respectively, in two years. This study provides a data reference and theoretical support for realizing water savings, nitrogen reduction, and sustainable agricultural development in the black soil region of Northeast China.


BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Anikó Meijer ◽  
Tim De Meyer ◽  
Klaas Vandepoele ◽  
Tina Kyndt

Abstract Background Small RNAs (sRNAs) regulate numerous plant processes directly related to yield, such as disease resistance and plant growth. To exploit this yield-regulating potential of sRNAs, the sRNA profile of one of the world’s most important staple crops – rice – was investigated throughout plant development using next-generation sequencing. Results Root and leaves were investigated at both the vegetative and generative phase, and early-life sRNA expression was characterized in the embryo and endosperm. This led to the identification of 49,505 novel sRNAs and 5581 tRNA-derived sRNAs (tsRNAs). In all tissues, 24 nt small interfering RNAs (siRNAs) were highly expressed and associated with euchromatic, but not heterochromatic transposable elements. Twenty-one nt siRNAs deriving from genic regions in the endosperm were exceptionally highly expressed, mimicking previously reported expression levels of 24 nt siRNAs in younger endosperm samples. In rice embryos, sRNA content was highly diverse while tsRNAs were underrepresented, possibly due to snoRNA activity. Publicly available mRNA expression and DNA methylation profiles were used to identify putative siRNA targets in embryo and endosperm. These include multiple genes related to the plant hormones gibberellic acid and ethylene, and to seed phytoalexin and iron content. Conclusions This work introduces multiple sRNAs as potential regulators of rice yield and quality, identifying them as possible targets for the continuous search to optimize rice production.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hadi Shams Esfandabadi ◽  
Mohsen Ghamary Asl ◽  
Zahra Shams Esfandabadi ◽  
Sneha Gautam ◽  
Meisam Ranjbari

PurposeThis research aims to monitor vegetation indices to assess drought in paddy rice fields in Mazandaran, Iran, and propose the best index to predict rice yield.Design/methodology/approachA three-step methodology is applied. First, the paddy rice fields are mapped by using three satellite-based datasets, namely SRTM DEM, Landsat8 TOA and MYD11A2. Second, the maps of indices are extracted using MODIS. And finally, the trend of indices over rice-growing seasons is extracted and compared with the rice yield data.FindingsRice paddies maps and vegetation indices maps are provided. Vegetation Health Index (VHI) combining average Temperature Condition Index (TCI) and minimum Vegetation Condition Index (VCI), and also VHI combining TCImin and VCImin are found to be the most proper indices to predict rice yield.Practical implicationsThe results serve as a guideline for policy-makers and practitioners in the agro-food industry to (1) support sustainable agriculture and food safety in terms of rice production; (2) help balance the supply and demand sides of the rice market and move towards SDG2; (3) use yield prediction in the rice supply chain management, pricing and trade flows management; and (4) assess drought risk in index-based insurances.Originality/valueThis study, as one of the first research assessing and mapping vegetation indices for rice paddies in northern Iran, particularly contributes to (1) extracting the map of paddy rice fields in Mazandaran Province by using satellite-based data on cloud-computing technology in the Google Earth Engine platform; (2) providing the map of VCI and TCI for the period 2010–2019 based on MODIS data and (3) specifying the best index to describe rice yield through proposing different calculation methods for VHI.


Plants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 138
Author(s):  
Tahmina Akter Urmi ◽  
Md. Mizanur Rahman ◽  
Md. Moshiul Islam ◽  
Md. Ariful Islam ◽  
Nilufar Akhtar Jahan ◽  
...  

Reliance on inorganic fertilizers with less or no use of organic fertilizers has impaired the productivity of soils worldwide. Therefore, the present study was conducted to quantify the effects of integrated nutrient management on rice yield, nutrient use efficiency, soil fertility, and carbon (C) sequestration in cultivated land. The experiment was designed with seven treatments comprising of a zero input control, recommended inorganic fertilizers (RD), poultry manure (PM) (5 t ha−1) + 50% RD, PM (2.5 t ha−1) + 75% RD, vermicompost (VC) (5 t ha−1) + 50% RD, VC (2.5 t ha−1) + 75% RD, and farmers’ practice (FP) with three replications that were laid out in a randomized complete block design. The highest grain yield (6.16–6.27 t ha−1) was attained when VC and PM were applied at the rate of 2.5 t ha−1 along with 75% RD. Uptake of nutrients and their subsequent use efficiencies appeared higher and satisfactory from the combined application of organic and inorganic fertilizers. The addition of organic fertilizer significantly influenced the organic carbon, total carbon, total nitrogen, ammonium nitrogen, nitrate nitrogen, soil pH, phosphorus, potassium, sulfur, calcium, and magnesium contents in post-harvest soil, which indicated enhancement of soil fertility. The maximum value of the organic carbon stock (18.70 t ha−1), total carbon stock (20.81 t ha−1), and organic carbon sequestration (1.75 t ha−1) was observed in poultry manure at the rate of 5 t ha−1 with 50% RD. The soil bulk density decreased slightly more than that of the control, which indicated the improvement of the physical properties of soil using organic manures. Therefore, regular nourishment of soil with organic and inorganic fertilizers might help rejuvenate the soils and ensure agricultural sustainability.


2022 ◽  
Vol 17 (1) ◽  
pp. 211
Author(s):  
A. K. M. Kanak Pervez ◽  
A.A. Shah ◽  
M. E. Uddin ◽  
M. N. I. Sarker ◽  
M. M. Islam
Keyword(s):  

MAUSAM ◽  
2022 ◽  
Vol 44 (2) ◽  
pp. 143-146
Author(s):  
A. CHOWDHURY ◽  
H.P. DAS

In this Study, relationship between rainfall and rice yield has been investigated in Ratnagiri and Thane districts of Maharashtra using 37 year's (1951.1987) data. Weekly water balance has been worked out in developing a yield index and its association with yield examined. Planting rates have been calculated assuming two categories of empirical rainfall accumulations of 450 and 500 mm. The yields were correlated with rainfall during selected growth phases, total rainfall, the yield index and the technological trend. Effects of late or early onset on yield has also been examined.   It appears that 450 mm rainfall accumulation from Ist June gives a ~reasonably accurate indication of transplanting paddy in Konkan. Technology seems.. to have much influence on the paddy yield. Results also reveal that rainfall during early growth phases is significantly related to the yield the date of planting was not found to/have a determining influence on the yield.


2022 ◽  
Vol 275 ◽  
pp. 108328
Author(s):  
Hari Sankar Nayak ◽  
João Vasco Silva ◽  
Chiter Mal Parihar ◽  
Suresh K. Kakraliya ◽  
Timothy J. Krupnik ◽  
...  

Author(s):  
Shuochen Jiang ◽  
Bin Du ◽  
Qixia Wu ◽  
Haiwei Zhang ◽  
Youyu Deng ◽  
...  

AbstractCadmium (Cd) contamination in agricultural soils has become a serious issue owing to its high toxicity threat to human health through the food chain. The purpose of this paper is to explore the availability of foliar selenium (Se) application in reducing Cd enrichment in brown rice. A field experiment from 2017 to 2019 was conducted to investigate the effects of foliar Se application on the physiology and yields of three rice cultivars and their accumulation of Cd in low-Cd and high-Cd soils. The grain protein contents and yields of rice plants grown in the high-Cd soil were lower than those of plants cultivated in the low-Cd soil by 27.85% and 6.82%, whereas the malondialdehyde (MDA) and Cd contents were higher by 66.06% and 91.47%, respectively. Se application reduced Cd translocation from the stems and leaves to the spikes, decreasing the Cd content in brown rice by 40.36%. Additionally, Se enhanced the antioxidative activity, glutathione and protein contents, and rice yield (7.58%) and decreased the MDA and proline contents. However, these Se effects weakened under the high-Cd soil. Foliar Se application can alleviate Cd-induced physiological stress in brown rice while improving its yield and reducing its Cd content.


Sign in / Sign up

Export Citation Format

Share Document