sex allocation
Recently Published Documents


TOTAL DOCUMENTS

674
(FIVE YEARS 69)

H-INDEX

50
(FIVE YEARS 3)

2022 ◽  
Vol 82 ◽  
Author(s):  
F. F. Coelho ◽  
A. G. Damasceno ◽  
A. Fávaro ◽  
G. S. Teodoro ◽  
L. P. Langsdorff

Abstract Resource allocation to reproduction can change depending on size, as predicted by the size-dependent sex allocation. This theory is based on the fact that small individuals will invest in the allocation of sex with lower cost of production, usually male gender. In plants, there are some andromonoecy species, presence of hermaphrodite and male flowers in the same individual. Andromonoecy provides a strategy to optimally allocate resources to male and female function, evolving a reproductive energy-saving strategy. Thus, our objective was to investigate the size-dependent sex allocation in Solanum lycocarpum St. Hil. We tested the hypothesis that plants with larger size will invest in the production of hermaphrodite flowers, because higher individuals have greater availability of resources to invest in more complex structures involving greater energy expenditure. The studied species was S. lycocarpum, an andromonoecious species. From June 2016 to March 2017 the data were collected in 38 individuals, divided in two groups: the larger plant group (n=18; height=3-5 m) and the smaller plant group (n=20; height=1-2 m).Our data show that there was effect of plant size on the flower production and the sexual gender allocation. The larger plants showed more flowers and higher production of hermaphrodite flowers. Furthermore, in the flower scale, we observed allometric relationship among the flower’s traits with proportional investments in biomass, anther size and gynoecium size. Our results are in agreement with size-dependent sex allocation theory and andromonoecy hypothesis related to mechanisms for optimal resource allocation to male and female function.


2021 ◽  
Author(s):  
Abrar A. Aljiboury ◽  
Jannice Friedman

AbstractIn hermaphrodites, the allocation of resources to each sex function can influence fitness through reproductive success and mating success. In wind pollinated plants, sex allocation theory predicts that male fitness increases linearly with investment of resources into male function. However, there have been few empirical tests of this prediction. We experimentally manipulated allocation to male function in Ambrosia artemisiifolia (common ragweed) in a field experiment and measured mating success using genetic assays. We investigated the effects of various morphological traits and flowering phenology on male fitness, and on male and female mate diversity. Our results provide evidence for a linear relation between allocation to male function and fitness. We find earlier onset of male flowering time increases reproductive success, while later onset flowering time increases the probability of mating with diverse individuals. This research is among the first empirical studies testing the prediction of linear male fitness returns in wind pollinated plants. Our results provide insight into the large investment into male function by wind pollinated plants and temporal variation in sex allocation.


2021 ◽  
Author(s):  
◽  
Elizabeth Victoria Berkeley

<p>The application of sex allocation theory can provide useful insight into endangered rhinoceros biology to improve in situ and ex situ conservation efforts by understanding the factors that cause a female to produce one sex of calf. By decreasing the birth sex ratio (number of males born per number of females born) in a population it may be possible to increase population growth rates. The first aim was to determine if an environmentally cued sex allocation response occurred in black rhinos. By examining rainfall and calf sex records in a wild black rhino population, I identified that birth sex ratios increase in rainy seasons and rainy years. Mothers were more likely to be observed with male calves if they conceived during the wet season (57.3% male) than during the dry season (42.9% male). Mothers were more likely to raise male calves if they conceived during wet years (60.2% male) than during dry years (46.1% male). Next, I examined whether pulsatile or random variation in sex ratios of different magnitudes, as might occur under changes in climate patterns, would be detrimental to rhinoceros population growth. Results demonstrated that while random increases in the magnitude of birth sex ratio variation, in either direction, increased population survival probability up to 0.907, sequential pulsed years of birth sex ratio bias had the opposite effect on population performance down to a survival probability of 0.619. Furthermore, for both scenarios, populations of less than 50 animals are particularly vulnerable to extinction. Since the sex biases observed in the captive rhinoceros population were attributed to several factors, I used an information theoretic approach to evaluate the relative importance of different hypotheses for birth sex bias for predicting calf sex. The results demonstrated that none of the models tested were greatly predictive of calf sex. Suspecting that the mechanisms that were cueing calf sex occur close to the time of conception and were nutritionally cued, in the final experiment, I measured changes in blood glucose in white rhinos after they ate different meals. At 90 minutes, serum glucose levels in rhinos eating the 10 % lucerne hay diet were significantly lower than the 5% glucose and 10% glucose diets but not the 10% pellet nor 10% grass hay diets. This is the first time such an experiment has been published in a wildlife species and not only demonstrates the feasibility of training rhinos for successive blood draws but also that captive diets are low glycemic for white rhinos. Overall, my research confirmed that an environmentally cued sex allocation response does occur in African rhinos, and changes in the duration and magnitude of sex ratio patterns can decrease population growth and increase potential for extinction. Additionally, none of the previous hypotheses for the suspected male-sex bias in captive born rhinos were influential on calf sex, which shifts the focus of sex allocation research in rhinos to more acute signals around the time of conception, such as changes in diet and body condition.</p>


2021 ◽  
Author(s):  
Nora Villamil ◽  
Benoit Sommervogel ◽  
John R Pannell

Selection through pollinators plays a major role in the evolution of reproductive traits. However, herbivory can also induce changes in plant sexual expression and sexual systems, potentially influencing conditions governing transitions between sexual systems. Previous work has shown that herbivory has a strong effect on sex allocation in the wind-pollinated annual plant Mercurialis annua, likely mediated by resource loss. It is also known that many plants respond to herbivory by inducing signalling, and endogenous responses to it, via the plant hormone jasmonate. Here, we attempt to uncouple the effects of herbivory on sex allocation in M. annua through resource limitation (tissue loss) versus plant responses to jasmonate hormone signalling. We used a two-factorial experiment with four treatment combinations: control, herbivory (25% chronic tissue loss), jasmonate, and combined herbivory and jasmonate. We estimated the effects of tissue loss and defence-inducing hormones on reproductive allocation, male reproductive effort, and sex allocation. Tissue loss caused plants to reduce their male reproductive effort, resulting in changes in combined sex allocation. However, application of jasmonate after herbivory reversed its effect on male investment. Our results show that herbivory has consequences on plant sex expression and sex allocation, and that defence-related hormones such as jasmonate can buffer the impacts. We discuss the physiological mechanisms that might underpin the effects of herbivory on sex allocation, and their potential implications for the evolution of plant sexual systems.


2021 ◽  
Author(s):  
◽  
Elizabeth Victoria Berkeley

<p>The application of sex allocation theory can provide useful insight into endangered rhinoceros biology to improve in situ and ex situ conservation efforts by understanding the factors that cause a female to produce one sex of calf. By decreasing the birth sex ratio (number of males born per number of females born) in a population it may be possible to increase population growth rates. The first aim was to determine if an environmentally cued sex allocation response occurred in black rhinos. By examining rainfall and calf sex records in a wild black rhino population, I identified that birth sex ratios increase in rainy seasons and rainy years. Mothers were more likely to be observed with male calves if they conceived during the wet season (57.3% male) than during the dry season (42.9% male). Mothers were more likely to raise male calves if they conceived during wet years (60.2% male) than during dry years (46.1% male). Next, I examined whether pulsatile or random variation in sex ratios of different magnitudes, as might occur under changes in climate patterns, would be detrimental to rhinoceros population growth. Results demonstrated that while random increases in the magnitude of birth sex ratio variation, in either direction, increased population survival probability up to 0.907, sequential pulsed years of birth sex ratio bias had the opposite effect on population performance down to a survival probability of 0.619. Furthermore, for both scenarios, populations of less than 50 animals are particularly vulnerable to extinction. Since the sex biases observed in the captive rhinoceros population were attributed to several factors, I used an information theoretic approach to evaluate the relative importance of different hypotheses for birth sex bias for predicting calf sex. The results demonstrated that none of the models tested were greatly predictive of calf sex. Suspecting that the mechanisms that were cueing calf sex occur close to the time of conception and were nutritionally cued, in the final experiment, I measured changes in blood glucose in white rhinos after they ate different meals. At 90 minutes, serum glucose levels in rhinos eating the 10 % lucerne hay diet were significantly lower than the 5% glucose and 10% glucose diets but not the 10% pellet nor 10% grass hay diets. This is the first time such an experiment has been published in a wildlife species and not only demonstrates the feasibility of training rhinos for successive blood draws but also that captive diets are low glycemic for white rhinos. Overall, my research confirmed that an environmentally cued sex allocation response does occur in African rhinos, and changes in the duration and magnitude of sex ratio patterns can decrease population growth and increase potential for extinction. Additionally, none of the previous hypotheses for the suspected male-sex bias in captive born rhinos were influential on calf sex, which shifts the focus of sex allocation research in rhinos to more acute signals around the time of conception, such as changes in diet and body condition.</p>


Author(s):  
GongTao DING ◽  
Bing LI ◽  
ZuoJun LIU ◽  
WenJin MA ◽  
HongZhen JIA ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Jitka Zluvova ◽  
Roman Hobza ◽  
Bohuslav Janousek

We have attempted to answer the question of whether the presence of sex chromosomes in the genome can affect the evolution of the autosomal part of the genome. As a model, we used dioecious plants from the section Otites of the genus Silene. We have observed a rise in adaptive evolution in the autosomal and pseudoautosomal parts of the genome, which are associated with the evolution of dioecy. This rise is caused neither by the accumulation of sexually antagonistic genes in the pseudoautosomal region nor by the co-evolution of genes acting in mitochondria (in spite of the fact that the dioecy evolved in this case most likely from cytoplasmic male sterility). Thus, this rise in the amount of positively selected codons is most likely caused by the adaptive evolution of genes involved in the specialization of the autosomal part of the genome on the dioecy as described in sex-allocation theory.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Y. Miyaguni ◽  
A. Agarie ◽  
K. Sugio ◽  
K. Tsuji ◽  
K. Kobayashi

AbstractSex allocation is one of the most studied traits in evolutionary biology because its theoretical predictions match the empirical data. Here, using the Ryukyu dry-wood termite Neotermes sugioi, we investigated several factors that could bias the sex allocation in three populations (Okinawa, Ishigaki/Iriomote, and Yonaguni). Our survey showed that there were more queen-only colonies than king-only colonies in these populations, suggesting a longer lifespan of the queens than that of the kings. In this condition, sex-asymmetric reproductive value (SRV) theory predicts female bias, because even after the short-lived kings die, the long-lived queens can continue reproduction with their sons. However, sex allocation in this species seemed to be biased toward males. Furthermore, we examined the possibility of intrasexual competition among siblings (ICS). If ICS is the cause of the bias, the allocation is expected to change depending on the total investment in sexual offspring. However, the biomass of both male and female alates increased linearly with the increase in the total biomass of the alates in these populations. Thus, neither the SRV nor the ICS theory could explain the male-biased sex ratio of N. sugioi. On the basis of these results, we discuss the remaining possibilities in this species.


Ecology ◽  
2021 ◽  
Author(s):  
Thibaut Barra ◽  
Vincent A. Viblanc ◽  
Claire Saraux ◽  
Jan O. Murie ◽  
F. Stephen Dobson

Sign in / Sign up

Export Citation Format

Share Document