scholarly journals Life history evolution in cichlids 1: revisiting the evolution of life histories in relation to parental care

2006 ◽  
Vol 19 (1) ◽  
pp. 66-75 ◽  
Author(s):  
N. KOLM ◽  
N. B. GOODWIN ◽  
S. BALSHINE ◽  
J. D. REYNOLDS
1986 ◽  
Vol 64 (4) ◽  
pp. 875-884 ◽  
Author(s):  
Catherine A. Tauber ◽  
Maurice J. Tauber

Geographical patterns of variation among North American populations of Chrysoperla carnea provide strong evidence that ecophysiological traits are central to the evolution of life histories. Selection pressure and the types and amounts of genetic variability underlying the traits vary geographically. Western populations exhibit considerable genetic variability in their reproductive responses to both photoperiod and prey. This variability is expressed both at the interpopulation level by the diversity of locally adapted populations and at the intrapopulation level in the form of genetic polymorphisms. By contrast, eastern, midwestern, and northwestern regions contain two types of reproductively isolated, monomorphic populations. The two types differ in their photoperiodic requirements for reproduction, but neither uses prey as a cue to stimulate reproduction. Although most of the characteristic responses to photoperiod and prey can vary independently of each other, the separate traits tend to covary to form coadaptive sets. The covariance of a few responses appears to have a genetic or physiological basis, a condition that places constraints on the evolution of life histories. Our results also demonstrate that comparative studies at the intraspecific level are highly significant to the analysis of life-history evolution and to the taxonomic treatment of species complexes.


2006 ◽  
Vol 29 (3) ◽  
pp. 288-289
Author(s):  
Peter Kappeler

The proposition that selective advantages of linguistic skills have contributed to shifts in ontogenetic landmarks of human life histories in early Homo sapiens is weakened by neglecting alternative mechanisms of life history evolution. Moreover, arguments about biological continuity through sweeping comparisons with nonhuman primates do not support various assumptions of this scenario.


2009 ◽  
Vol 364 (1523) ◽  
pp. 1499-1509 ◽  
Author(s):  
Shripad Tuljapurkar ◽  
Jean-Michel Gaillard ◽  
Tim Coulson

Environmental stochasticity is known to play an important role in life-history evolution, but most general theory assumes a constant environment. In this paper, we examine life-history evolution in a variable environment, by decomposing average individual fitness (measured by the long-run stochastic growth rate) into contributions from average vital rates and their temporal variation. We examine how generation time, demographic dispersion (measured by the dispersion of reproductive events across the lifespan), demographic resilience (measured by damping time), within-year variances in vital rates, within-year correlations between vital rates and between-year correlations in vital rates combine to determine average individual fitness of stylized life histories. In a fluctuating environment, we show that there is often a range of cohort generation times at which the fitness is at a maximum. Thus, we expect ‘optimal’ phenotypes in fluctuating environments to differ from optimal phenotypes in constant environments. We show that stochastic growth rates are strongly affected by demographic dispersion, even when deterministic growth rates are not, and that demographic dispersion also determines the response of life-history-specific average fitness to within- and between-year correlations. Serial correlations can have a strong effect on fitness, and, depending on the structure of the life history, may act to increase or decrease fitness. The approach we outline takes a useful first step in developing general life-history theory for non-constant environments.


2021 ◽  
Author(s):  
Sébastien Lion ◽  
Sylvain Gandon

AbstractWhat is the influence of periodic environmental fluctuations on life-history evolution? We present a general theoretical framework to understand and predict the long-term evolution of life-history traits under a broad range of ecological scenarios. Indeed, this analysis yields time-varying selection gradients that help dissect the influence of the fluctuations of the environment on the competitive ability of a specific life-history mutation. We use this framework to analyse the evolution of key life-history traits of pathogens, such as transmission and virulence. These examples reveal how periodic fluctuations of the environment can affect the evolution of pathogens, and illustrate the usefulness and broad applicability of this new approach.


The Condor ◽  
2000 ◽  
Vol 102 (1) ◽  
pp. 52-59 ◽  
Author(s):  
David W. Winkler

Abstract In recent years, two approaches have emerged for the analysis of character evolution: the largely statistical “convergence” approach and the mainly cladistic “homology” approach. I discuss the strengths and weaknesses of these approaches as they apply to phylogenetic analyses of life-history variation in birds. Using examples from analyses of character variation in swallows, I suggest that the phylogenetic approach yields distinctive insights into the selective role of the environment and other characters of the organism on the evolution of life-history traits. This view thus has the potential of bringing together micro- and macro-evolutionary views of life-history evolution.


2021 ◽  
Vol 9 ◽  
Author(s):  
Kaj Hulthén ◽  
Jacob S. Hill ◽  
Matthew R. Jenkins ◽  
Randall Brian Langerhans

Predation risk and resource availability are two primary factors predicted by theory to drive the evolution of life histories. Yet, disentangling their roles in life-history evolution in the wild is challenging because (1) the two factors often co-vary across environments, and (2) environmental effects on phenotypes can mask patterns of genotypic evolution. Here, we use the model system of the post-Pleistocene radiation of Bahamas mosquitofish (Gambusia hubbsi) inhabiting blue holes to provide a strong test of the roles of predation and resources in life-history evolution, as the two factors do not co-vary in this system and we attempted to minimize environmental effects by raising eight populations under common laboratory conditions. We tested a priori predictions of predation- and resource-driven evolution in five life-history traits. We found that life-history evolution in Bahamas mosquitofish largely reflected complex interactions in the effects of predation and resource availability. High predation risk has driven the evolution of higher fecundity, smaller offspring size, more frequent reproduction, and slower growth rate—but this predation-driven divergence primarily occurred in environments with relatively high resource availability, and the effects of resources on life-history evolution was generally greater within environments having high predation risk. This implies that resource-driven selection on life histories overrides selection from predators when resources are particularly scarce. While several results matched a priori predictions, with the added nuance of interdependence among selective agents, some did not. For instance, only resource levels, not predation risk, explained evolutionary change in male age at maturity, with more rapid sexual maturation in higher-resource environments. We also found faster (not slower) juvenile growth rates within low-resource and low-predation environments, probably caused by selection in these high-competition scenarios favoring greater growth efficiency. Our approach, using common-garden experiments with a natural system of low- and high-predation populations that span a continuum of resource availability, provides a powerful way to deepen our understanding of life-history evolution. Overall, it appears that life-history evolution in this adaptive radiation has resulted from a complex interplay between predation and resources, underscoring the need for increased attention on more sophisticated interactions among selective agents in driving phenotypic diversification.


2016 ◽  
Vol 283 (1834) ◽  
pp. 20152764 ◽  
Author(s):  
Eli M. Swanson ◽  
Anne Espeset ◽  
Ihab Mikati ◽  
Isaac Bolduc ◽  
Robert Kulhanek ◽  
...  

Nutrition is a key component of life-history theory, yet we know little about how diet quality shapes life-history evolution across species. Here, we test whether quantitative measures of nutrition are linked to life-history evolution across 96 species of butterflies representing over 50 independent diet shifts. We find that butterflies feeding on high nitrogen host plants as larvae are more fecund, but their eggs are smaller relative to their body size. Nitrogen and sodium content of host plants are also both positively related to eye size. Some of these relationships show pronounced lineage-specific effects. Testis size is not related to nutrition. Additionally, the evolutionary timing of diet shifts is not important, suggesting that nutrition affects life histories regardless of the length of time a species has been adapting to its diet. Our results suggest that, at least for some lineages, species with higher nutrient diets can invest in a range of fitness-related traits like fecundity and eye size while allocating less to each egg as offspring have access to a richer diet. These results have important implications for the evolution of life histories in the face of anthropogenic changes in nutrient availability.


Sign in / Sign up

Export Citation Format

Share Document