scholarly journals Glutathione Reductase from Human Erythrocytes. Amino-Acid Sequence of the Structurally Known FAD-Binding Domain

1981 ◽  
Vol 120 (2) ◽  
pp. 407-419 ◽  
Author(s):  
Renate UNTUCHT-GRAU ◽  
R. Heiner SCHIRMER ◽  
Ilse SCHIRMER ◽  
R. Luise KRAUTH-SIEGEL
1992 ◽  
Vol 12 (2) ◽  
pp. 598-608
Author(s):  
J D Chen ◽  
C S Chan ◽  
V Pirrotta

The zeste gene product is involved in two types of genetic effects dependent on chromosome pairing: transvection and the zeste-white interaction. Comparison of the predicted amino acid sequence with that of the Drosophila virilis gene shows that several blocks of amino acid sequence have been very highly conserved. One of these regions corresponds to the DNA binding domain. Site-directed mutations in this region indicate that a sequence resembling that of the homeodomain DNA recognition helix is essential for DNA binding activity. The integrity of an amphipathic helical region is also essential for binding activity and is likely to be responsible for dimerization of the DNA binding domain. Another very strongly conserved domain of zeste is the C-terminal region, predicted to form a long helical structure with two sets of heptad repeats that constitute two long hydrophobic ridges at opposite ends and on opposite faces of the helix. We show that this domain is responsible for the extensive aggregation properties of zeste that are required for its role in transvection phenomena. A model is proposed according to which the hydrophobic ridges induce the formation of open-ended coiled-coil structures holding together many hundreds of zeste molecules and possibly anchoring these complexes to other nuclear structures.


1992 ◽  
Vol 12 (2) ◽  
pp. 598-608 ◽  
Author(s):  
J D Chen ◽  
C S Chan ◽  
V Pirrotta

The zeste gene product is involved in two types of genetic effects dependent on chromosome pairing: transvection and the zeste-white interaction. Comparison of the predicted amino acid sequence with that of the Drosophila virilis gene shows that several blocks of amino acid sequence have been very highly conserved. One of these regions corresponds to the DNA binding domain. Site-directed mutations in this region indicate that a sequence resembling that of the homeodomain DNA recognition helix is essential for DNA binding activity. The integrity of an amphipathic helical region is also essential for binding activity and is likely to be responsible for dimerization of the DNA binding domain. Another very strongly conserved domain of zeste is the C-terminal region, predicted to form a long helical structure with two sets of heptad repeats that constitute two long hydrophobic ridges at opposite ends and on opposite faces of the helix. We show that this domain is responsible for the extensive aggregation properties of zeste that are required for its role in transvection phenomena. A model is proposed according to which the hydrophobic ridges induce the formation of open-ended coiled-coil structures holding together many hundreds of zeste molecules and possibly anchoring these complexes to other nuclear structures.


2014 ◽  
Vol 33 (12) ◽  
pp. 2753-2758 ◽  
Author(s):  
Margaret L. Eng ◽  
John E. Elliott ◽  
Stephanie P. Jones ◽  
Tony D. Williams ◽  
Ken G. Drouillard ◽  
...  

1991 ◽  
Vol 11 (2) ◽  
pp. 754-764 ◽  
Author(s):  
R Yano ◽  
M Nomura

The SRP3-1 mutation is an allele-specific suppressor of temperature-sensitive mutations in the largest subunit (A190) of RNA polymerase I from Saccharomyces cerevisiae. Two mutations known to be suppressed by SRP3-1 are in the putative zinc-binding domain of A190. We have cloned the SRP3 gene by using its suppressor activity and determined its complete nucleotide sequence. We conclude from the following evidence that the SRP3 gene encodes the second-largest subunit (A135) of RNA polymerase I. First, the deduced amino acid sequence of the gene product contains several regions with high homology to the corresponding regions of the second-largest subunits of RNA polymerases of various origins, including those of RNA polymerase II and III from S. cerevisiae. Second, the deduced amino acid sequence contains known amino acid sequences of two tryptic peptides from the A135 subunit of RNA polymerase I purified from S. cerevisiae. Finally, a strain was constructed in which transcription of the SRP3 gene was controlled by the inducible GAL7 promoter. When this strain, which can grow on galactose but not on glucose, was shifted from galactose medium to glucose medium, a large decrease in the cellular concentration of A135 was observed by Western blot analysis. We have also identified the specific amino acid alteration responsible for suppression by SRP3-1 and found that it is located within the putative zinc-binding domain conserved among the second-largest subunits of eucaryotic RNA polymerases. From these results, it is suggested that this putative zinc-binding domain is in physical proximity to and interacts with the putative zinc-binding domain of the A190 subunit.


1987 ◽  
Vol 169 (3) ◽  
pp. 539-544 ◽  
Author(s):  
Pierre-Yves HAUMONT ◽  
Marie-Antoinette THOMAS ◽  
Francoise LABEYRIE ◽  
Florence LEDERER

1985 ◽  
Vol 226 (1242) ◽  
pp. 127-134 ◽  

The human epidermal growth factor receptor has been purified and partial amino acid sequence obtained. A synthetic oligonucleotide was used to select complementary DNA clones from placental and A431 clone banks. The nucleotide sequence of a 5.8 kilobase transcript was determined and used to predict the total amino acid sequence of the receptor. We have predicted a model for the receptor which has an external ligand binding domain of 621 amino acids, a transmembrane region of 23 amino acids, and a cytoplasmic domain of 542 amino acids having protein tyrosine kinase activity. The kinase autophosphorylation sites have been mapped onto the primary amino acid sequence. Analysis of protein sequence databases have shown that the erb -B oncogene of avian erythroblastosis virus has acquired part of the avian EGF receptor gene. The hypothesis has been proposed that transformation by this virus is the result of expression of a truncated EGF receptor which lacks the majority of the EGF binding domain and delivers a continuous proliferation signal to transformed cells. We describe here the production of polyclonal and monoclonal antibodies to selected synthetic peptides from the EGF receptor and v-erb B sequences. Antisera to sequences encompassing the three major sites of autophosphorylation and the putative ATP binding site all recognize the native EGF receptor molecule. We have used these reagents to test our model of EGF receptor structure and v-erb B function.


Sign in / Sign up

Export Citation Format

Share Document