scholarly journals Amino Acid Sequence around the Active Site of Two Class I Fructose-1,6-Bisphosphate Aldolases from Staphylococci

2005 ◽  
Vol 128 (2-3) ◽  
pp. 343-348 ◽  
Author(s):  
Stephan FISCHER ◽  
Akira TSUGITA
2006 ◽  
Vol 282 (7) ◽  
pp. 4859-4867 ◽  
Author(s):  
Andrey Galkin ◽  
Liudmila Kulakova ◽  
Eugene Melamud ◽  
Ling Li ◽  
Chun Wu ◽  
...  

Class I and class II fructose-1,6-bisphosphate aldolases (FBPA), glycolytic pathway enzymes, exhibit no amino acid sequence homology and utilize two different catalytic mechanisms. The mammalian class I FBPA employs a Schiff base mechanism, whereas the human parasitic protozoan Giardia lamblia class II FBPA is a zinc-dependent enzyme. In this study, we have explored the potential exploitation of the Giardia FBPA as a drug target. First, synthesis of FBPA was demonstrated in Giardia trophozoites by using an antibody-based fluorescence assay. Second, inhibition of FBPA gene transcription in Giardia trophozoites suggested that the enzyme is necessary for the survival of the organism under optimal laboratory growth conditions. Third, two crystal structures of FBPA in complex with the transition state analog phosphoglycolohydroxamate (PGH) show that the enzyme is homodimeric and that its active site contains a zinc ion. In one crystal form, each subunit contains PGH, which is coordinated to the zinc ion through the hydroxamic acid hydroxyl and carbonyl oxygen atoms. The second crystal form contains PGH only in one subunit and the active site of the second subunit is unoccupied. Inspection of the two states of the enzyme revealed that it undergoes a conformational transition upon ligand binding. The enzyme cleaves d-fructose-1,6-bisphosphate but not d-tagatose-1,6-bisphosphate, which is a tight binding competitive inhibitor. The essential role of the active site residue Asp-83 in catalysis was demonstrated by amino acid replacement. Determinants of catalysis and substrate recognition, derived from comparison of the G. lamblia FBPA structure with Escherichia coli FBPA and with a closely related enzyme, E. coli tagatose-1,6-bisphosphate aldolase (TBPA), are described.


1988 ◽  
Vol 263 (10) ◽  
pp. 4641-4646 ◽  
Author(s):  
J E Cronan ◽  
W B Li ◽  
R Coleman ◽  
M Narasimhan ◽  
D de Mendoza ◽  
...  

1986 ◽  
Vol 261 (4) ◽  
pp. 1844-1848
Author(s):  
M A Atkinson ◽  
E A Robinson ◽  
E Appella ◽  
E D Korn

Biochemistry ◽  
1977 ◽  
Vol 16 (6) ◽  
pp. 1070-1076 ◽  
Author(s):  
Shiro Ohnoki ◽  
Bor-Shyue Hong ◽  
John M. Buchanan

FEBS Letters ◽  
1980 ◽  
Vol 114 (1) ◽  
pp. 124-126 ◽  
Author(s):  
Neill W. Haggarty ◽  
Linda A. Fothergill

1999 ◽  
Vol 339 (2) ◽  
pp. 261-267 ◽  
Author(s):  
Heng-Chien HO ◽  
Ta-Hsiu LIAO

The complete amino acid sequence of the fungus Syncephalastrum racemosum (Sr-) nuclease has been delineated on the basis of protein sequencing of the intact protein and its protease-digested peptides. The resulting 250-residue sequence shows a carbohydrate side chain attached at Asn134 and two half-cystine residues (Cys242 and Cys247) cross-linked to form a small disulphide loop. On the basis of the sequence of Sr-nuclease, a computer search in the sequence database yielded 60% and 48% positional identities with the sequences of Cunninghamella echinulata nuclease C1 and yeast mitochondria nuclease respectively, and very little similarity to those of several known mammalian DNases I. Sequence alignment of the three similar nucleases reveals that the single small disulphide loop is unchanged but the carbohydrate attachment in Sr-nuclease is absent from the other two nucleases. Alignment also shows a highly conserved region harbouring Sr-nuclease His85, which is assigned as one of the essential residues in the active site. The cDNA encoding Sr-nuclease was amplified by using reverse transcriptase-mediated PCR with degenerate primers based on its amino acid sequence. Subsequently, specific primers were synthesized for use in the 3´ and 5´ rapid amplification of cDNA ends (RACE). Direct sequencing of the RACE products led to the deduction of a 1.1 kb cDNA sequence for Sr-nuclease. The cDNA contains an open reading frame of 320 amino acid residues including a 70-residue putative signal peptide and the 250-residue mature protein. Finally, the recombinant Sr-nuclease was expressed in Escherichia coli strain BL21(DE3) in which the recombinant protein, after solubilization with detergent and renaturation, showed both DNase and RNase activities. The assignment of His85 to the active site was further supported by evidence that the mutant protein Sr-nuclease (H85A), in which His85 was replaced by Ala, was not able to degrade DNA or RNA.


Sign in / Sign up

Export Citation Format

Share Document