scholarly journals DNA sequence analysis of the oli1 gene reveals amino acid changes in mitochondrial ATPase subunit 9 from oligomycin-resistant mutants of Saccharomyces cerevisiae

1985 ◽  
Vol 152 (3) ◽  
pp. 709-714 ◽  
Author(s):  
Beng Guat OOI ◽  
Charles E. NOVITSKI ◽  
Phillip NAGLEY
1988 ◽  
Vol 8 (2) ◽  
pp. 978-981
Author(s):  
C N Giroux ◽  
J R Mis ◽  
M K Pierce ◽  
S E Kohalmi ◽  
B A Kunz

A collection of 196 spontaneous mutations in the SUP4-o gene of the yeast Saccharomyces cerevisiae was analyzed by DNA sequencing. The classes of mutation identified included all possible types of base-pair substitution, deletions of various lengths, complex alterations involving multiple changes, and insertions of transposable elements. Our findings demonstrate that at least several different mechanisms are responsible for spontaneous mutagenesis in S. cerevisiae.


Genetics ◽  
1998 ◽  
Vol 148 (4) ◽  
pp. 1491-1505 ◽  
Author(s):  
Bernard A Kunz ◽  
Karthikeyan Ramachandran ◽  
Edward J Vonarx

AbstractTo help elucidate the mechanisms involved in spontaneous mutagenesis, DNA sequencing has been applied to characterize the types of mutation whose rates are increased or decreased in mutator or antimutator strains, respectively. Increased spontaneous mutation rates point to malfunctions in genes that normally act to reduce spontaneous mutation, whereas decreased rates are associated with defects in genes whose products are necessary for spontaneous mutagenesis. In this article, we survey and discuss the mutational specificities conferred by mutator and antimutator genes in the budding yeast Saccharomyces cerevisiae. The implications of selected aspects of the data are considered with respect to the mechanisms of spontaneous mutagenesis.


1988 ◽  
Vol 8 (2) ◽  
pp. 978-981 ◽  
Author(s):  
C N Giroux ◽  
J R Mis ◽  
M K Pierce ◽  
S E Kohalmi ◽  
B A Kunz

A collection of 196 spontaneous mutations in the SUP4-o gene of the yeast Saccharomyces cerevisiae was analyzed by DNA sequencing. The classes of mutation identified included all possible types of base-pair substitution, deletions of various lengths, complex alterations involving multiple changes, and insertions of transposable elements. Our findings demonstrate that at least several different mechanisms are responsible for spontaneous mutagenesis in S. cerevisiae.


Blood ◽  
1995 ◽  
Vol 85 (3) ◽  
pp. 727-733 ◽  
Author(s):  
H Takahashi ◽  
M Murata ◽  
T Moriki ◽  
H Anbo ◽  
T Furukawa ◽  
...  

Genomic DNA was studied from four patients with platelet-type von Willebrand disease (vWD) from two Japanese families previously reported. The entire coding region of platelet glycoprotein (GP) Ib alpha, a component of the platelet receptor for von Willebrand factor (vWF), was examined by polymerase chain reaction (PCR) followed by direct DNA sequence analysis. A single point mutation was found in all patients resulting in substitution of Val (GTG) for Met (ATG) at residue 239 of GPIb alpha. All patients were heterozygous for the mutation, whereas none of the unaffected family members had an amino acid substitution at residue 239. Because the nucleotide substitution destroys an NIa III restriction site on GPIb alpha, PCR products were subjected to digestion with this enzyme; DNA fragments from both normal and mutant alleles were detected in all affected individuals. In allele- specific PCR, DNA was amplified from patients' genomic DNA using either adenine- or guanine-containing primers, whereas only adenine-containing primer successfully amplified DNA from normal individuals. Cloning of amplified DNA into bacteriophage M13mp19 and subsequent DNA sequence analysis confirmed the mutation in these families. The absence of the amino acid substitution at residue 239 of GPIb alpha in the normal individuals tested, together with the linkage of this substitution to the phenotypic expression of disease in these two families and in a family recently described suggest that this amino acid change is a molecular basis for platelet-type vWD, and the substitution may produce a quite similar phenotype to the one reported previously (Gly to Val at residue 233 of GPIb alpha).


Sign in / Sign up

Export Citation Format

Share Document