Sperm binding to the human zona pellucida and calcium influx in response to GnRH and progesterone

Andrologia ◽  
2002 ◽  
Vol 34 (5) ◽  
pp. 301-307 ◽  
Author(s):  
P. Morales ◽  
E. Pizarro ◽  
M. Kong ◽  
C. Pasten
Reproduction ◽  
2000 ◽  
pp. 15-23 ◽  
Author(s):  
K Jewgenow ◽  
M Rohleder ◽  
I Wegner

Despite many efforts, the control of reproduction in feral cat populations is still a problem in urban regions around the world. Immunocontraception is a promising approach; thus the present study examined the suitability of the widely used pig zona pellucida proteins (pZP) for contraception in feral domestic cats. Purified zona pellucida proteins obtained from pig and cat ovaries were used to produce highly specific antisera in rabbits. Antibodies against pZP raised in rabbits or lions were not effective inhibitors of either in vitro sperm binding (cat spermatozoa to cat oocytes) or in vitro fertilization in cats, whereas antibodies against feline zona pellucida proteins (fZP) raised in rabbits showed a dose-dependent inhibition of in vitro fertilization. Immunoelectrophoresis, ELISA and immunohistology of ovaries confirmed these results, showing crossreactivity of anti-fZP sera to fZP and to a lesser extent to pZP, but no interaction of anti-pZP sera with fZP. It is concluded that cat and pig zonae pellucidae express a very small number of shared antigenic determinants, making the use of pZP vaccine in cats questionable. A contraceptive vaccine based on feline zona pellucida determinants will be a better choice for the control of reproduction in feral cats if immunogenity can be achieved.


2011 ◽  
Vol 18 (9) ◽  
pp. 876-885 ◽  
Author(s):  
Mayel Chirinos ◽  
Cecilia Cariño ◽  
María Elena González-González ◽  
Ernesto Arreola ◽  
Rodrigo Reveles ◽  
...  

2014 ◽  
Vol 205 (6) ◽  
pp. 801-809 ◽  
Author(s):  
Matteo A. Avella ◽  
Boris Baibakov ◽  
Jurrien Dean

The extracellular zona pellucida surrounds ovulated eggs and mediates gamete recognition that is essential for mammalian fertilization. Zonae matrices contain three (mouse) or four (human) glycoproteins (ZP1–4), but which protein binds sperm remains controversial. A defining characteristic of an essential zona ligand is sterility after genetic ablation. We have established transgenic mice expressing human ZP4 that form zonae pellucidae in the absence of mouse or human ZP2. Neither mouse nor human sperm bound to these ovulated eggs, and these female mice were sterile after in vivo insemination or natural mating. The same phenotype was observed with truncated ZP2 that lacks a restricted domain within ZP251–149. Chimeric human/mouse ZP2 isoforms expressed in transgenic mice and recombinant peptide bead assays confirmed that this region accounts for the taxon specificity observed in human–mouse gamete recognition. These observations in transgenic mice document that the ZP251–149 sperm-binding domain is necessary for human and mouse gamete recognition and penetration through the zona pellucida.


Reproduction ◽  
2011 ◽  
Vol 142 (3) ◽  
pp. 377-381 ◽  
Author(s):  
Gary F Clark

During murine fertilization, sperm bind to the specialized extracellular matrix of the egg, known as the zona pellucida (ZP). This matrix is composed of three major glycoproteins designated ZP1, ZP2, and ZP3. Three models for sperm–ZP binding are now under consideration. The domain-specific model posits that adhesion relies primarily on interactions between N-glycans located within the C-terminal domain of ZP3 and a lectin-like egg-binding protein in the sperm plasma membrane. However, this model does not explain recent results obtained in studies with ZP2mut mice. In the supramolecular structure model, sperm bind to a three-dimensional zona matrix that depends on the cleavage status of ZP2. This paradigm does not explain the potent inhibitory effect of specific carbohydrate sequences or a C-terminal glycopeptide (gp55) derived from ZP3. Recently, O-glycans linked at Thr155 and Thr162 of ZP3 were implicated as potential ligands that mediate initial sperm–ZP binding. This novel model will be reviewed. A major challenge is to develop an alternate model for sperm–ZP binding that fits as much of the data as possible. Such a model is presented in this review. This paradigm could explain how the inability to cleave ZP2mut in ZP2mut mice could result in continued sperm binding to two-cell stage embryos without the formation of a supramolecular binding complex. These novel insights should guide future experiments that will eventually determine the molecular basis underlying gamete binding in the mouse and other eutherian mammals.


Zygote ◽  
1999 ◽  
Vol 7 (2) ◽  
pp. 105-111 ◽  
Author(s):  
R. D. Moreno ◽  
M. Hoshi ◽  
C. Barros

Acrosin is a serine protease located within mammalian acrosome as inactive proacrosin. Sulphated polymers bind to proacrosin and acrosin, to a domain different from the active site. Upon binding, these polymers induce proacrosin activation and some of them, such as fucoidan, inhibit sperm binding to the zona pellucida. In this work we have studied the interaction of solubilised zona pellucida glycoproteins (ZPGs), heparin and ARIS (Acrosome Reaction Inducing Substance of Starfish) with boar and human acrosin. We have found that ARIS, solubilised ZPGs and fucoidan, but not heparin, inhibit the binding of the monoclonal antibody against human acrosin C5F10 to boar or human proacrosin. These results suggest that fucoidan, solubilised ZPGs and ARIS bind to a related domain on the proacrosin surface. Moreover, ARIS was able to induce human proacrosin activation. On the other hand, neither ARIS nor heparin from porcine intestinal mucosa or bovine lung induced hamster sperm acrosome reaction or sperm motility. Recent data showed that acrosin is involved in dispersal of the acrosomal matrix after acrosome reaction. Thus, the control of the ZPG glycan chains over proacrosin activation may regulate both sperm penetration rate and limited proteolysis of zona pellucida proteins.


1980 ◽  
Vol 4 (1) ◽  
pp. 29-36 ◽  
Author(s):  
A. O. Trounson ◽  
C. A. Shivers ◽  
R. McMaster ◽  
A. Lopata

Sign in / Sign up

Export Citation Format

Share Document