sialyl lewis x
Recently Published Documents


TOTAL DOCUMENTS

563
(FIVE YEARS 43)

H-INDEX

58
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Anam Tasneem ◽  
Shubham Parashar ◽  
Tanya Jain ◽  
Simran Aittan ◽  
Jyoti Rautela ◽  
...  

Cell surface glycans, depending on their structures and dynamic modifications, act as the first point of contact and regulate cell-cell, cell-matrix, and cell-pathogen interactions. Particularly, the sialyl-Lewis-X (sLeX, CD15s) tetrasaccharide epitope, expressed on both glycoproteins and gangliosides, participates in leukocyte extravasation via interactions with selectins expressed on endothelial cells, lymphocytes, and platelets (CD62-E/L/P). Neutrophils carrying sLeX epitopes are thought to be responsible for chronic inflammatory diseases resulting in plaque formation and atherosclerosis. Intense efforts have been devoted to the development of sLeX mimetics for inhibition of cell adhesion. On the other hand, dysregulated expression of sLeX and poor extravasation are the major underlying causes of leukocyte adhesion deficiency-II (LAD-II) disorders that result in frequent infections and poor immune response. We hypothesized that metabolic processing of peracetyl N-(cycloalkyl)acyl-D-mannosamine derivatives, through the sialic acid pathway, might result in the expression of sialoglycans with altered hydrophobicity which in-turn could modulate their binding to endogenous lectins, including selectins. Herein, we show that treatment of HL-60 (human acute myeloid leukemia) cells with peracetyl N-cyclobutanoyl-D-mannosamine (Ac4ManNCb), at 50 microM for 48 h, resulted in a robust three to four fold increase in the binding of anti-sLeX (CSLEX1) antibody and enhanced cell adhesion to E-selectin coated surfaces; while the corresponding straight-chain analogue, peracetyl N-pentanoyl-D-mannosamine (Ac4ManNPent), and peracetyl N-cyclopropanoyl-D-mannosamine (Ac4ManNCp) both resulted in 2.0-2.5fold increase compared to controls. The ability to enhance sLeX expression using small molecules has the potential to provide novel opportunities to address challenges in the treatment of immune deficiency disorders.


Author(s):  
Peigen Chen ◽  
Yingchun Guo ◽  
Lei Jia ◽  
Jing Wan ◽  
TianTian He ◽  
...  

Objective: In this study, we mainly explored two questions: Which microorganisms were functionally active in the endometrium of patients with endometrial cancer (EC)? What kind of response did the human host respond to functionally active microorganisms?Methods: Nine endometrial cancer patients and eight normal subjects were included in this study. HMP Unified Metabolic Analysis Network 3 (HUMAnN3) was used to obtain functional information of microorganisms. In addition, metaCyc-based GSEA functional enrichment analysis was used to obtain information on the metabolic pathways of the human host. At the same time, the O2PLS model and Spearman correlation analysis were used to analyze the microorganisms–host interaction.Results: With the novel metatranscriptome analysis pipeline, we described the composition of more than 5,000 functionally active microorganisms and analyzed the difference in microorganisms between the EC and the normal group. Our research found that these microorganisms were involved in part of the metabolic process of endometrial cancer, such as 6-sulfo-sialyl Lewis x epitope, N-acetyl-beta-glucosaminyl. In addition, the host–microbiota crosstalk of EC endometrium also included many biological processes, mainly functions related to tumor migration and the Apelin signaling pathway.Conclusion: The functionally active microorganisms in the EC endometrium played an essential role in the occurrence and migration of tumors. This meant that functionally active microorganisms could not be ignored in the treatment of endometrial cancer. This study helped to better understand the possible role of endometrial functional, active microorganisms in the occurrence and development of EC in patients with endometrial cancer and provided new information for new attempts to treat EC.


2021 ◽  
Vol 22 (18) ◽  
pp. 9961
Author(s):  
Wei Xiong ◽  
Wenxin Liu ◽  
Shogo Nishida ◽  
Daichi Komiyama ◽  
Wei Liu ◽  
...  

Asthma is an allergic disease that causes severe infiltration of leukocytes into the lungs. Leukocyte infiltration is mediated by the binding of sialyl Lewis X (sLex) glycans present on the leukocytes to E-and P-selectins present on the endothelial cells at the sites of inflammation. Here, we found that mouse eosinophils express sLex glycans, and their infiltration into the lungs and proliferation in the bone marrow were significantly suppressed by an anti-sLex monoclonal antibody (mAb) F2 in a murine model of ovalbumin-induced asthma. The percentage of eosinophils in the bronchoalveolar lavage fluid and bone marrow and serum IgE levels decreased significantly in the F2-administered mice. Levels of T helper type 2 (Th2) cytokines and chemokines, involved in IgE class switching and eosinophil proliferation and recruitment, were also decreased in the F2-administered mice. An ex vivo cell rolling assay revealed that sLex glycans mediate the rolling of mouse eosinophils on P-selectin-expressing cells. These results indicate that the mAb F2 exerts therapeutic effects in a murine model of allergen-induced asthma, suggesting that sLex carbohydrate antigen could serve as a novel therapeutic target for allergic asthma.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Georges Tarris ◽  
Alexis de Rougemont ◽  
Marie-Anaïs Estienney ◽  
Julien Journet ◽  
Anne-Cécile Lariotte ◽  
...  

Abstract Background The recent COVID-19 pandemic has raised concerns about patient diagnosis and follow-up of chronically ill patients. Patients suffering from chronic illnesses, concomitantly infected by SARS-CoV-2, globally tend to have a worse prognosis and poor outcomes. Renal tropism and acute kidney injury following SARS-CoV-2 infection has recently been described in the literature, with elevated mortality rates. Furthermore, patients with pre-existing chronic kidney disease, infected by SARS-CoV-2, should be monitored carefully. Here, we report the case of a 69-year-old patient with splenic marginal zone lymphoma, suffering from longstanding chronic kidney disease following SARS-CoV-2 infection. Case presentation A 69-year-old male patient previously diagnosed with pulmonary embolism and splenic marginal zone lymphoma (Splenomegaly, Matutes 2/5, CD5 negative and CD23 positive), was admitted to the hospital with shortness of breath, fever and asthenia. A nasopharyngeal swab test was performed in addition to a CT-scan, which confirmed SARS-CoV-2 infection. Blood creatinine increased following SARS-CoV-2 infection at 130 μmol/l, with usual values at 95 μmol/l. The patient was discharged at home with rest and symptomatic medical treatment (paracetamol and hydration), then readmitted to the hospital in August 2020. A kidney biopsy was therefore conducted as blood creatinine levels were abnormally elevated. Immunodetection performed in a renal biopsy specimen confirmed co-localization of SARS-CoV2 nucleocapsid and protease 3C proteins with ACE2, Lewis x and sialyl-Lewis x antigens in proximal convoluted tubules and podocytes. Co-localization of structural and non-structural viral proteins clearly demonstrated viral replication in proximal convoluted tubules in this chronically ill patient. Additionally, we observed the co-localization of sialyl-Lewis x and ACE2 receptors in the same proximal convoluted tubules. Reverse Transcriptase-Polymerase Chain Reaction test performed on the kidney biopsy was negative, with very low Ct levels (above 40). The patient was finally readmitted to the haematology department for initiation of chemotherapy, including CHOP protocol and Rituximab. Conclusions Our case emphasizes on the importance of monitoring kidney function in immunosuppressed patients and patients suffering from cancer following SARS-CoV-2 infection, through histological screening. Further studies will be required to decipher the mechanisms underlying chronic kidney disease and the putative role of sialyl-Lewis x and HBGA during SARS-CoV-2 infection.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Long Chen ◽  
Wei Luo ◽  
Yuanzheng Wang ◽  
Xiongbo Song ◽  
Senlei Li ◽  
...  

Abstract Background One of the greatest challenges for tissue-engineered bone is the low survival rate of locally grafted cells. The cell homing technology can effectively increase the number of these grafted cells, therefore, enhancing the repair of bone defects. Here we explore the effect of fucosylation modification on the directional homing of bone marrow mesenchymal stem cells (BMSCs) and their ability to repair bone defects. Results Glycosylated BMSCs expressed high levels of the Sialyl Lewis-X (sLeX) antigen, which enabled the cells to efficiently bind to E- and P-selectins and to home to bone defect sites in vivo. Micro-CT and histological staining results confirmed that mice injected with FuT7-BMSCs showed an improved repair of bone defects compared to unmodified BMSCs. Conclusions The glycosylation modification of BMSCs has significantly enhanced their directional homing ability to bone defect sites, therefore, promoting bone repair. Our results suggest that glycosylation-modified BMSCs can be used as the source of the cells for the tissue-engineered bone and provide a new approach for the treatment of bone defects. Graphic Abstract


Author(s):  
Ying Wang ◽  
Weie Zhao ◽  
Si Mei ◽  
Panyu Chen ◽  
Tsz-Ying Leung ◽  
...  

Capacitated spermatozoa initiate fertilization by binding to the zona pellucida (ZP). Defective spermatozoa-ZP binding causes infertility. The sialyl-Lewis(x) (SLeX) sequence is the most abundant terminal sequence on the glycans of human ZP glycoproteins involving in spermatozoa-ZP binding. This study aimed to identify and characterize the SLeX-binding proteins on human spermatozoa. By using affinity chromatography followed by mass spectrometric analysis, chromosome 1 open reading frame 56 (C1orf56) was identified to be a SLeX-binding protein of capacitated spermatozoa. The acrosomal region of spermatozoa possessed C1orf56 immunoreactive signals with intensities that increased after capacitation indicating translocation of C1orf56 to the cell surface during capacitation. Treatment with antibody against C1orf56 inhibited spermatozoa-ZP binding and ZP-induced acrosome reaction. Purified C1orf56 from capacitated spermatozoa bound to human ZP. A pilot clinical study was conducted and found no association between the percentage of capacitated spermatozoa with C1orf56 expression and in vitro fertilization (IVF) rate in assisted reproduction treatment. However, the percentage of C1orf56 positive spermatozoa in the acrosome-reacted population was significantly (P < 0.05) lower in cycles with a fertilization rate < 60% when compared to those with a higher fertilization rate, suggesting that C1orf56 may have functions after ZP-binding and acrosome reaction. A larger clinical trial is needed to determine the possible use of sperm C1orf56 content for the prediction of fertilization potential of sperm samples.


Medicines ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 32
Author(s):  
Sandra Marijan ◽  
Angela Mastelić ◽  
Anita Markotić ◽  
Nikolina Režić-Mužinić ◽  
Nikolina Vučenović ◽  
...  

The adhesion of cancer cells to vascular endothelium is a critical process in hematogenous metastasis and might be similar to the recruitment of leukocytes at the site of inflammation. It is mediated by E-selectin and its ligands, of which the most stereospecific is a glycoconjugate sialyl Lewis x (CD15s), which may be expressed as an oligosaccharide branch of the CD44 glycoprotein, as well as a self-contained glycosphingolipid. It is also known that increased sialylation of glycoconjugates is a feature of malignant cells. The aim of the study was to analyse the effect of a novel thieno[2,3-b]pyridine, compound 1, in MDA-MB-231 triple-negative breast cancer cells (TNBCs) upon CD15s and CD44 expression in different cell subpopulations using flow cytometry. CD15s expression was compared between mesenchymal-like cancer stem cells (CSC, CD44+CD24−), epithelial cells without CD44 (CD44−CD24+ and CD44−CD24−), and CD44+CD24+ cells that exhibit mesenchymal and epithelial features. In addition, expression of CD44 in CD15s+CSC and CD15s−CSC was determined. Compound 1 significantly decreased the percentage of CD15s+CSC, CD15s+CD44+CD24+, and CD15s+CD44− subpopulations, as well as the expression of CD15s in CD44+CD24+ and CD44− cells, and therefore shows potential as a treatment for TNBC.


ACS Catalysis ◽  
2021 ◽  
pp. 8042-8048
Author(s):  
Xiaoju Zheng ◽  
Lin Zhu ◽  
Tianlu Li ◽  
Wenjia Xu ◽  
Dongke Liu ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Qinmin Liu ◽  
Lijuan Liu ◽  
Chunwei Mo ◽  
Xiao Zhou ◽  
Dongming Chen ◽  
...  

Abstract Background Nasopharyngeal carcinoma (NPC) is a type of head and neck malignant tumor with a high incidence in specific regional distribution, and its traditional therapies face some challenges. It has become an urgent need to seek new therapeutic strategies without or with low toxicity and side effects. At present, more and more researchers has been attracting attention by nanotheranostic platform. Therefore, our team synthesized the polyethylene glycol-coated ultrasmall superparamagnetic iron oxide nanoparticles-coupled sialyl Lewis X (USPIO-PEG-sLex) nanotheranostic platform with high temperature pyrolysis. Results The USPIO-PEG-sLex nanoparticles had excellent photothermal conversion property, and the temperature of USPIO-PEG-sLex nanoparticles solution increased with its concentration and power density of near-infrared (NIR) on 808 nm wavelengths. Five USPIO-PEG-sLex nanoparticles with different concentrations of 0 mg/ml, 0.025 mg/ml, 0.05 mg/ml, 0.1 mg/ml and 0.2 mg/ml were prepared. The biological toxicity results showed that the viability of NPC 5-8F cells is related to the concentration of USPIO-PEG-sLex nanoparticles and the culture time (P < 0.001). The results of photothermal therapy (PTT) in vitro indicated that the viability of 5-8F cells decreased significantly with the concentration of USPIO-PEG-sLex nanoparticles increases (P < 0.001), and the viability of NPC 5-8F cells were 91.04% ± 5.20%, 77.83% ± 3.01%, 73.48% ± 5.55%, 59.50% ± 10.98%, 17.11% ± 3.14%, respectively. The USPIO-PEG-sLex nanoparticles could target the tumor area, and reduce the T2* value of tumor tissue. The T2* values of tumor pre- and post-injection were 30.870 ± 5.604 and 18.335 ± 4.351, respectively (P < 0.001). In addition, USPIO-PEG-sLex nanoparticles as a photothermal agent for PTT could effectively inhibit tumor progression. The ratio of volume change between tail vein injection group, control group, nanoparticles without laser irradiation group and blank group after 5 treatments were 3.04 ± 0.57, 5.80 ± 1.06, 8.09 ± 1.96, 7.89 ± 2.20, respectively (P < 0.001). Conclusions Our synthesized USPIO-PEG-sLex nanotheranostic platform, and it may be become a new strategy for the treatment of NPC. Graphic Abstract


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhi Ma ◽  
Huixia Yang ◽  
Lin Peng ◽  
Christina Kuhn ◽  
Anca Chelariu-Raicu ◽  
...  

BackgroundLewis antigens such as Sialyl Lewis A (sLeA), Sialyl Lewis X (sLeX), Lewis X (LeX), and Lewis Y (LeY) are a class of carbohydrate molecules that are known to mediate adhesion between tumor cells and endothelium by interacting with its selectin ligands. However, their potential role in miscarriage remains enigmatic. This study aims to analyze the expression pattern of sLeA, sLeX, LeX, and LeY in the placental villi tissue of patients with a medical history of unexplained miscarriages.MethodsParaffin-embedded slides originating from placental tissue were collected from patients experiencing a miscarriage early in their pregnancy (6–13 weeks). Tissues collected from spontaneous (n = 20) and recurrent (n = 15) miscarriages were analyzed using immunohistochemical and immunofluorescent staining. Specimens obtained from legally terminated normal pregnancies were considered as control group (n = 18). Assessment of villous vessel density was performed in another cohort (n = 10 each group) of gestation ages-paired placenta tissue. Protein expression was evaluated with Immunoreactive Score (IRS). Statistical analysis was performed by using Graphpad Prism 8.ResultsExpression of sLeA, sLeX, LeX, and LeY in the syncytiotrophoblast was significantly upregulated in the control group compared with spontaneous and recurrent miscarriage groups. However, no prominent differences between spontaneous and recurrent miscarriage groups were identified. Potential key modulators ST3GAL6 and NEU1 were found to be significantly downregulated in the recurrent miscarriage group and upregulated in the spontaneous group, respectively. Interestingly, LeX and LeY expression was also detected in the endothelial cells of villous vessels in the control group but no significant expression in miscarriage groups. Furthermore, assessment of villous vessel density using CD31 found significantly diminished vessels in all size groups of villi (small villi &lt;200 µm, P = 0.0371; middle villi between 200 and 400 µm, P = 0.0010 and large villi &gt;400 µm, P = 0.0003). Immunofluorescent double staining also indicated the co-localization of LeX/Y and CD31.ConclusionsThe expression of four mentioned carbohydrate Lewis antigens and their potential modulators, ST3GAL6 and NEU1, in the placenta of patients with miscarriages was significantly different from the normal pregnancy. For the first time, their expression pattern in the placenta was illustrated, which might shed light on a novel understanding of Lewis antigens’ role in the pathogenesis of miscarriages.


Sign in / Sign up

Export Citation Format

Share Document