Psychosexual adjustment and age factors in 130 men undergone hypospadias surgery in a Chinese hospital

Andrologia ◽  
2010 ◽  
Vol 42 (6) ◽  
pp. 384-388 ◽  
Author(s):  
W.-W. Wang ◽  
C.-H. Deng ◽  
L.-W. Chen ◽  
L.-Y. Zhao ◽  
J.-C. Mo ◽  
...  
1995 ◽  
pp. 1902-1907 ◽  
Author(s):  
Marc A. M. Mureau ◽  
Froukje M. E. Slijper ◽  
Rien J. M. Nijman ◽  
Jacques C. van der Meulen ◽  
Frank C. Verhulst ◽  
...  

1995 ◽  
Vol 154 (5) ◽  
pp. 1902-1907 ◽  
Author(s):  
Marc A.M. Mureau ◽  
Froukje M.E. Slijper ◽  
Rien J.M. Nijman ◽  
Jacques C. van der Meulen ◽  
Frank C. Verhulst ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 50-51
Author(s):  
Elan W. Salzhauer ◽  
Mark Horowitz

1992 ◽  
Vol 25 (4-5) ◽  
pp. 233-240
Author(s):  
T. Palmgren

Due to the slow growth of nitrification bacteria at low temperatures, nitrogen reduction normally requires long hydraulic retention time during winter. Important for the nitrification process is the aerated sludge age. Factors influencing the sludge age are aerated volume, mixed liquor suspended solids concentration, organic loading and sludge yield. In an existing plant you cannot easily expand the volume and the load is difficult to decrease. But the suspended solids concentration can be increased by running the biological step with the contact stabilisation process. At the Käppala Association sewage treatment plant in Lidingö just outside Stockholm, one of the six aeration tanks has been reconstructed for full scale nitrogen removal experiments. In this tank the old aeration system has been replaced with rubber membrane diffusers. Further more there are several zones separated by walls in the tank. The tank can thereby be run with great flexibility. By running it with the contact stabilisation process, the sludge age has been improved by a factor between 1.5 and 2 and thereby it succeeds in keeping the nitrification bacteria in the system even during snow melting. At temperatures of about 9 °C and hydraulic retention times of less than 3 hours in the contact zone there has been a nitrification degree of up to 50 to 60 %. The experiment was conducted with a stabilisation zone of up to half the total volume of the aeration tank. The main purpose for the experiments during the winter seasons was to improve nitrification. Keeping the nitrifiers in the system had been a crucial problem during previous years. When the nitrifiers were lost with an increased flow and decreased temperature the nitrification process didn't restart until the temperature was increased and the load decreased. Usually this didn't occur until the middle of the summer meaning a loss of nitrification for up to six months. In Sweden there is a goal set for 50 % nitrogen reduction for the plants in the Stockholm region. At Käppala we manage to keep 60 to 70 % nitrogen reduction during the warm season, that is from July to December. If we can keep up the nitrification the whole year we can achieve 50 % as a yearly average under normal conditions even though we can't keep the nitrogen reduction rate as high during the cold season.


Author(s):  
Hong Hanh Nguyen ◽  
Markus Venohr

AbstractA growing literature indicates that untreated wastewater from leaky sewers stands among major sources of pollution to water resources of urban systems. Despite that, the quantification and allocation of sewer exfiltration are often restricted to major pipe areas where inspection data are available. In large-scale urban models, the emission from sewer exfiltration is either neglected (particularly from private sewers) or represented by simplified fixed values, and as such its contribution to the overall urban emission remains questionable. This study proposes an extended model framework which incorporates sewer exfiltration pathway in the catchment model for a better justified pollution control and management of urban systems at a nationwide scale. Nutrient emission from urban areas is quantified by means of the Modelling of Nutrient Emissions in River Systems (MONERIS) model. Exfiltration is estimated for public and private sewers of different age groups in Germany using the verified methods at local to city scales, upscaling techniques, and expert knowledge. Results of this study suggest that the average exfiltration rate is likely to be less than 0.01 L/s per km, corresponding to approximately 1 mm/m/year of wastewater discharge to groundwater. Considering the source and age factors, the highest rate of exfiltration is defined in regions with significant proportions of public sewers older than 40 years. In regions where public sewers are mostly built after 1981, the leakage from private sewers can be up two times higher than such from public sewers. Overall, sewer exfiltration accounts for 9.8% and 17.2% of nitrate and phosphate loads from urban systems emitted to the environment, which increases to 11.2% and 19.5% in the case of no remediation scenario of projected defective sewer increases due to ageing effects. Our results provide a first harmonized quantification of potential leakage losses in urban wastewater systems at the nationwide scale and reveal the importance of rehabilitation planning of ageing sewer pipes in public and private sewer systems. The proposed model framework, which incorporates important factors for urban sewer managers, will allow further targeting the important data need for validating the approach at the regional and local scales in order to support better strategies for the long-term nutrient pollution control of large urban wastewater systems.


Sign in / Sign up

Export Citation Format

Share Document