Cooperation and Prey Capture Efficiency in a Social Spider, Anelosimus eximius (Araneae, Theridiidae)

Ethology ◽  
2010 ◽  
Vol 90 (2) ◽  
pp. 121-133 ◽  
Author(s):  
Alain Pasquet ◽  
Bertrand Krafft
Author(s):  
Fernanda Carolina da Silva ◽  
Mateus Moleta ◽  
Camila Alves Dos Anjos ◽  
Gabriel Marra Schade ◽  
Gabriel Staichak ◽  
...  

1981 ◽  
Vol 26 (3) ◽  
pp. 461-466 ◽  
Author(s):  
Michael C. Swift ◽  
Richard B. Forwarder.

Ethology ◽  
2007 ◽  
Vol 113 (9) ◽  
pp. 856-861 ◽  
Author(s):  
Andréa L.T. Souza ◽  
Marcelo O. Gonzaga ◽  
João Vasconcellos-Neto

Author(s):  
Ronald Osinga ◽  
Sanne Van Delft ◽  
Muhammad Wahyudin Lewaru ◽  
Max Janse ◽  
Johan A.J. Verreth

In order to determine optimal feeding regimes for captive corals, prey capture by the scleractinian coral Galaxea fascicularis was determined by measuring clearance of prey items from the surrounding water. Colonies of G. fascicularis (sized between 200 and 400 polyps) were incubated in 1300 ml incubation chambers. Nauplii of the brine shrimp Artemia sp. were used as the prey item. A series of incubation experiments was conducted to determine the maximal capture per feeding event and per day. To determine maximal capture per feeding event, total uptake of nauplii after one hour was determined for different prey item availabilities ranging from 50 to 4000 nauplii per polyp. To determine maximal capture per day, the corals were subjected to four repetitive feeding events at three different prey item densities (50, 100 and 150 nauplii per polyp). Alongside these quantitative experiments, it was tested to what extent the feeding response of corals is triggered by chemical cues. One hour after food addition, extract of Artemia nauplii was added to the incubation chambers to test its effect on subsequent prey capture rates. In all experiments, prey capture was expressed as the number of nauplii consumed per coral polyp. Total capture of Artemia nauplii by G. fascicularis after a single feeding event increased linearly up till a prey item availability of 2000 nauplii per polyp. Maximal capture per feeding event was estimated at 1200 nauplii per polyp, which is higher than rates reported in previous studies. It became apparent that at high densities of Artemia nauplii, the clearance rate method does not discriminate between active capture and passive sedimentation. Repetitive feeding with 50 nauplii per polyp resulted in a constant total prey capture per feeding event. At a supply of 100 nauplii per polyp, total capture decreased after the first feeding event, and remained constant during the subsequent feeding events at a level comparable to the lower food availability. However, at a supply of 150 nauplii per polyp, total capture per event was higher throughout the entire four-hour incubation period, which obfuscates an accurate estimation of the maximal daily food uptake. In all incubations, a decrease in capture efficiency was observed within the course of the feeding event. In all repetitive feeding experiments, capture efficiency increased immediately upon addition of a new batch of food. This increase in efficiency was not caused by a priming effect of extract of Artemia. The inconsistencies in the data show that estimates of prey capture based on clearance rates should be interpreted with caution, because this method does not take into account potential dynamics of prey capture and release.


2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Tharaka Wijerathna ◽  
Dilini Tharanga ◽  
Inoka C. Perera ◽  
Mayuri R. Wijesinghe

We compare web properties and fitness of the Giant wood spider Nephila pilpes within and outside its natural rainforest habitat in Sri Lanka. The nonforest habitats comprised rural home gardens and plantations. We hypothesize that marked differences would be evident between the two habitats in (i) web properties and (ii) fitness of the female spiders. Web architectural and silk thread properties were measured in 25 webs of adult female spiders in each of the two habitats, while female abdomen size was used as the proxy for fitness. Findings support both hypotheses. The nonforest webs were more closely knit (smaller mesh spaces) and the hub was placed at higher position on the web than that in the forest webs both altering prey capture efficiency. Also, females in nonforest habitats were significantly smaller than those in the forest, indicating lowered fitness. The disparities in web characteristics and fitness are impressive given that the forest and nonforest habitats are located in close proximity, suggesting that rainforest orbweaver spiders such as Nephila pilpes may suffer population declines if the extents of natural forest continue to shrink.


1994 ◽  
Vol 42 (2) ◽  
pp. 237 ◽  
Author(s):  
MF Downes

Aspects of the biology of the social spider Phryganoponrs candidus (=Badumna candida) (L. Koch) in relation to its life history are described, based on data from a field and laboratory study conducted over several years at Townsville, Queensland. Host plant records and preferences are given, and an analysis made of the effects of nest height and ecotone proximity on nest occurrence. Founded between October and February as a chambered silk funnel by a solitary subadult female, the nest was enlarged by the female and her progeny into a complex retreat area and an outlying prey-trapping area. The architecture of the retreat was not an aggregation of repeated subunits. Closely adjacent nests sometimes united their prey-capture webbing to form compound nests. From a tagged sample of new-founded nests, 31% reached a stage at which thriving spiderlings were present. Numbers of spiders in nests ranged from 9 to 224 and correlated with nest size, which ranged from 70 to more than 20 000 cm(2). At the peak of nest growth in October, the stage at which subadult spiders began to disperse, about 90 spiders inhabited each nest; only 12% of new-founded nests reached this stage. Summer dispersal left nests empty; they degenerated under rain and became moribund by March. The main host plants were Zizyphus mauritiana (the chinee apple) and Dolichondrone heterophylla. Most nests occurred between 0.5 and 2.5 m from the ground but height did not influence nest success. Nests were prevalent at ecotones, although they did not thrive better there. Because so much of the social biology of spiders is integrated with the structure and function of their nests, these findings are relevant to an understanding of the evolution of sociality in spiders.


Sign in / Sign up

Export Citation Format

Share Document