Determination of Resistance or Susceptibility of Soybean Genotypes to Soybean Cyst Nematode, Heterodera glycines, Race 3

1987 ◽  
Vol 118 (4) ◽  
pp. 306-311 ◽  
Author(s):  
A. S. Al-Jalili ◽  
V. T. Sapra ◽  
R. P. Pacumbaba
Nematology ◽  
2008 ◽  
Vol 10 (6) ◽  
pp. 919-924 ◽  
Author(s):  
Mansour Salati ◽  
Robert Riggs ◽  
Zahra Tanha Maafi

AbstractThe soybean cyst nematode (SCN), Heterodera glycines, found in most soybean growing regions in the world, is considered the most economically damaging pathogen of soybean worldwide. A survey conducted in the northern provinces of Mazandaran and Golestan, the main soybean-producing areas in Iran, revealed SCN was widespread in different localities of these regions. Of the 55 and 88 soil samples collected from soybean fields in Mazandaran and Golestan provinces, respectively, ten (18.8%) and 23 (26%) samples were infested with H. glycines; the population densities of second-stage juveniles (J2) and eggs ranged from 500 to 60 000 and 500 to ≥100 000 per 250 cm3 soil, respectively. These population densities of H. glycines are indicative of reductions in soybean yield. HG Type tests were conducted on 16 field populations. HG Type 0 (race 3) was the most common with 94% frequency, whereas HG Type 7 (race 6) was found in 6% of tested populations. Most populations of H. glycines parasitised PI88788 and PI548316. Eight of the most commonly used soybean cultivars were tested against H. glycines HG Type 0; seven of them, Sepideh, Sahar (Pershing), Gorgan 3, Williams 82, JK (Sari), BP (Telar) and Hill, had high female indices and were considered susceptible to HG Type 0. Only the cultivar DPX showed low female indices and was resistant to race 3. The initial observations showed that the first life cycle of SCN required 30-34 days in early-planted fields (late May and early June), whereas in late-planted fields (early July), white females were visible 20 days after planting. Several generations could be expected in a single growing season under field conditions in northern Iran.


Plant Disease ◽  
2006 ◽  
Vol 90 (10) ◽  
pp. 1297-1301 ◽  
Author(s):  
G. M. Tabor ◽  
G. L. Tylka ◽  
C. R. Bronson

Growth chamber experiments were conducted to investigate whether parasitism by increasing population densities of Heterodera glycines, the soybean cyst nematode, increases the incidence and severity of stem colonization by the aggressive genotype A and the mild genotype B of Cadophora gregata (Phialophora gregata), causal agents of brown stem rot of soybeans. Soybean genotypes with three combinations of resistance and susceptibility to H. glycines and genotype A of C. gregata were inoculated with each genotype of C. gregata alone or each genotype with two population densities of H. glycines eggs, 1,500 or 10,000 per 100 cm3 of soil. Stems of two H. glycines-susceptible soybeans were more colonized by both aggressive and mild genotypes of C. gregata in the presence of high than in the presence of low H. glycines population density.


Plant Disease ◽  
2003 ◽  
Vol 87 (6) ◽  
pp. 655-661 ◽  
Author(s):  
G. M. Tabor ◽  
G. L. Tylka ◽  
J. E. Behm ◽  
C. R. Bronson

Growth chamber experiments were conducted to investigate whether parasitism by Heterodera glycines, the soybean cyst nematode, increases incidence and severity of brown stem rot (BSR) of soybean, caused by Phialophora gregata, in both resistant and susceptible soybean cultivars. Soybean genotypes with various combinations of resistance and susceptibility to both pathogens were inoculated with P. gregata alone or P. gregata plus H. glycines. In most tests of H. glycines-susceptible genotypes, incidence and severity of internal stem discoloration, characteristic of BSR, was greater in the presence than in the absence of H. glycines, regardless of susceptibility or resistance to BSR. There was less of an increasing effect of H. glycines on stem symptoms in genotypes resistant to both BSR and H. glycines; however, P. gregata colonization of these genotypes was increased. Stems of both a BSR-resistant and a BSR-susceptible genotype were colonized earlier by P. gregata in the presence than in the absence of H. glycines. Our findings indicate that H. glycines can increase the incidence and severity of BSR in soybean regardless of resistance or susceptibility to either pathogen.


1999 ◽  
Vol 22 (2) ◽  
pp. 257-260 ◽  
Author(s):  
Antonio Orlando Mauro ◽  
Antonio Luiz de Oliveira ◽  
Sonia Marli Z. Mauro

A study was made of the genetics of resistance to the soybean cyst nematode, race 3, in a population derived from crosses between the Brazilian soybean genotypes BR 90-4722 and FT-Cristalina. Crosses between the two parents were made, the F1 and F2 generations were obtained and the population was analyzed for the number of cysts found in each plant of each generation as well as the type of reaction to the nematode. The results showed that resistance to the cyst nematode in this soybean population is of a qualitative nature and conditioned by three genes, one dominant and two recessives. The heritability of the character was very high (0.96), with minimum environmental effect, which means that this population is suitable for the development of soybean cultivars resistant to the cyst nematode.


2020 ◽  
Vol 80 (03) ◽  
Author(s):  
Ik-Young Choi ◽  
Prakash Basnet ◽  
Hana Yoo ◽  
Neha Samir Roy ◽  
Rahul Vasudeo Ramekar ◽  
...  

Soybean cyst nematode (SCN) is one of the most damaging pest of soybean. Discovery and characterization of the genes involved in SCN resistance are important in soybean breeding. Soluble NSF attachment protein (SNAP) genes are related to SCN resistance in soybean. SNAP genes include five gene families, and 2 haplotypes of exons 6 and 9 of SNAP18 are considered resistant to the SCN. In present study the haplotypes of GmSNAP18 were surveyed and chacterized in a total of 60 diverse soybean genotypes including Korean cultivars, landraces, and wild-types. The target region of exons 6 and 9 in GmSNAP18 region was amplified and sequenced to examine nucleotide variation. Characterization of 5 haplotypes identified in present study for the GmSNAP18 gene revealed two haplotypes as resistant, 1 as susceptible and two as novel. A total of twelve genotypes showed resistant haplotypes, and 45 cultivars were found susceptible. Interestingly, the two novel haplotypes were present in 3 soybean lines. The information provided here about the haplotypic variation of GmSNAP18 gene can be further explored for soybean breeding to develop resistant varieties.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 146
Author(s):  
Leonardo F. Rocha ◽  
Karla L. Gage ◽  
Mirian F. Pimentel ◽  
Jason P. Bond ◽  
Ahmad M. Fakhoury

The soybean cyst nematode (SCN; Heterodera glycines Ichinohe) is a major soybean-yield-limiting soil-borne pathogen, especially in the Midwestern US. Weed management is recommended for SCN integrated management, since some weed species have been reported to be hosts for SCN. The increase in the occurrence of resistance to herbicides complicates weed management and may further direct ecological–evolutionary (eco–evo) feedbacks in plant–pathogen complexes, including interactions between host plants and SCN. In this review, we summarize weed species reported to be hosts of SCN in the US and outline potential weed–SCN management interactions. Plants from 23 families have been reported to host SCN, with Fabaceae including most host species. Out of 116 weeds hosts, 14 species have known herbicide-resistant biotypes to 8 herbicide sites of action. Factors influencing the ability of weeds to host SCN are environmental and edaphic conditions, SCN initial inoculum, weed population levels, and variations in susceptibility of weed biotypes to SCN within a population. The association of SCN on weeds with relatively little fitness cost incurred by the latter may decrease the competitive ability of the crop and increase weed reproduction when SCN is present, feeding back into the probability of selecting for herbicide-resistant weed biotypes. Therefore, proper management of weed hosts of SCN should be a focus of integrated pest management (IPM) strategies to prevent further eco–evo feedbacks in the cropping system.


Sign in / Sign up

Export Citation Format

Share Document