Characterization of genotype by environment interactions in soybean breeding programmes of southeast Europe

2006 ◽  
Vol 125 (2) ◽  
pp. 191-194 ◽  
Author(s):  
A. Sudaric ◽  
D. Simic ◽  
M. Vrataric
Author(s):  
Geoff Simm ◽  
Geoff Pollott ◽  
Raphael Mrode ◽  
Ross Houston ◽  
Karen Marshall

Abstract In this chapter, topics focused on how to quantify the extent to which genes affect measured traits and how to use this information in breeding programmes. Highlights include: estimating heritability; estimating non-additive parameters, correlations, and genotype by environment interactions, molecular genetics and trait variations; and calculating inbreeding using SNP markers.


Euphytica ◽  
2009 ◽  
Vol 174 (3) ◽  
pp. 315-324 ◽  
Author(s):  
Nikola Hristov ◽  
Novica Mladenov ◽  
Veselinka Djuric ◽  
Ankica Kondic-Spika ◽  
Ana Marjanovic-Jeromela ◽  
...  

2020 ◽  
Vol 80 (03) ◽  
Author(s):  
Ik-Young Choi ◽  
Prakash Basnet ◽  
Hana Yoo ◽  
Neha Samir Roy ◽  
Rahul Vasudeo Ramekar ◽  
...  

Soybean cyst nematode (SCN) is one of the most damaging pest of soybean. Discovery and characterization of the genes involved in SCN resistance are important in soybean breeding. Soluble NSF attachment protein (SNAP) genes are related to SCN resistance in soybean. SNAP genes include five gene families, and 2 haplotypes of exons 6 and 9 of SNAP18 are considered resistant to the SCN. In present study the haplotypes of GmSNAP18 were surveyed and chacterized in a total of 60 diverse soybean genotypes including Korean cultivars, landraces, and wild-types. The target region of exons 6 and 9 in GmSNAP18 region was amplified and sequenced to examine nucleotide variation. Characterization of 5 haplotypes identified in present study for the GmSNAP18 gene revealed two haplotypes as resistant, 1 as susceptible and two as novel. A total of twelve genotypes showed resistant haplotypes, and 45 cultivars were found susceptible. Interestingly, the two novel haplotypes were present in 3 soybean lines. The information provided here about the haplotypic variation of GmSNAP18 gene can be further explored for soybean breeding to develop resistant varieties.


Euphytica ◽  
2017 ◽  
Vol 213 (5) ◽  
Author(s):  
Megan M. Mathey ◽  
Sonali Mookerjee ◽  
Lise L. Mahoney ◽  
Kazim Gündüz ◽  
Umesh Rosyara ◽  
...  

2020 ◽  
Author(s):  
Edwin Lauer ◽  
Andrew Sims ◽  
Steven McKeand ◽  
Fikret Isik

Abstract Genetic parameters were estimated using a five-series multienvironment trial of Pinus taeda L. in the southern USA. There were 324 half-sib families planted in five test series across 37 locations. A set of six variance/covariance matrices for the genotype-by-environment (G × E) effect for tree height and diameter were compared on the basis of model fit. In single-series analysis, extended factor analytical models provided generally superior model fit to simpler models for both traits; however, in the combined-series analysis, diameter was optimally modeled using simpler variance/covariance structures. A three-way compound term for modeling G × E interactions among and within series yielded substantial improvements in terms of model fit and standard errors of predictions. Heritability of family means ranged between 0.63 and 0.90 for both height and diameter. Average additive genetic correlations among sites were 0.70 and 0.61 for height and diameter, respectively, suggesting the presence of some G × E interaction. Pairs of sites with the lowest additive genetic correlations were located at opposite ends of the latitude range. Latent factor regression revealed a small number of parents with large factor scores that changed ranks significantly between southern and northern environments. Study Implications Multienvironmental progeny tests of loblolly pine (Pinus taeda L.) were established over 10 years in the southern United States to understand the genetic variation for the traits of economic importance. There was substantial genetic variation between open-pollinated families, suggesting that family selection would be efficient in the breeding program. Genotype-by-environment interactions were negligible among sites in the deployment region but became larger between sites at the extremes of the distribution. The data from these trials are invaluable in informing the breeding program about the genetic merit of selection candidates and their potential interaction with the environment. These results can be used to guide deployment decisions in the southern USA, helping landowners match germplasm with geography to achieve optimal financial returns and conservation outcomes.


Sign in / Sign up

Export Citation Format

Share Document