Co-localization of quantitative trait loci for foliar disease resistance in sorghum

2009 ◽  
Vol 128 (5) ◽  
pp. 532-535 ◽  
Author(s):  
S. M. Mohan ◽  
R. Madhusudhana ◽  
K. Mathur ◽  
C. J. Howarth ◽  
G. Srinivas ◽  
...  
Crop Science ◽  
2002 ◽  
Vol 42 (1) ◽  
pp. 271-277 ◽  
Author(s):  
J. Yuan ◽  
V. N. Njiti ◽  
K. Meksem ◽  
M. J. Iqbal ◽  
K. Triwitayakorn ◽  
...  

Crop Science ◽  
2002 ◽  
Vol 42 (1) ◽  
pp. 271 ◽  
Author(s):  
J. Yuan ◽  
V. N. Njiti ◽  
K. Meksem ◽  
M. J. Iqbal ◽  
K. Triwitayakorn ◽  
...  

2010 ◽  
Vol 100 (1) ◽  
pp. 72-79 ◽  
Author(s):  
John C. Zwonitzer ◽  
Nathan D. Coles ◽  
Matthew D. Krakowsky ◽  
Consuelo Arellano ◽  
James B. Holland ◽  
...  

Southern leaf blight (SLB), gray leaf spot (GLS), and northern leaf blight (NLB) are all important foliar diseases impacting maize production. The objectives of this study were to identify quantitative trait loci (QTL) for resistance to these diseases in a maize recombinant inbred line (RIL) population derived from a cross between maize lines Ki14 and B73, and to evaluate the evidence for the presence genes or loci conferring multiple disease resistance (MDR). Each disease was scored in multiple separate trials. Highly significant correlations between the resistances and the three diseases were found. The highest correlation was identified between SLB and GLS resistance (r = 0.62). Correlations between resistance to each of the diseases and time to flowering were also highly significant. Nine, eight, and six QTL were identified for SLB, GLS, and NLB resistance, respectively. QTL for all three diseases colocalized in bin 1.06, while QTL colocalizing for two of the three diseases were identified in bins 1.08 to 1.09, 2.02/2.03, 3.04/3.05, 8.05, and 10.05. QTL for time to flowering were also identified at four of these six loci (bins 1.06, 3.04/3.05, 8.05, and 10.05). No disease resistance QTL was identified at the largest-effect QTL for flowering time in bin 10.03.


Genetics ◽  
2001 ◽  
Vol 158 (3) ◽  
pp. 1301-1309 ◽  
Author(s):  
Iain W Wilson ◽  
Céline L Schiff ◽  
Douglas E Hughes ◽  
Shauna C Somerville

Abstract Powdery mildew diseases are economically important diseases, caused by obligate biotrophic fungi of the Erysiphales. To understand the complex inheritance of resistance to the powdery mildew disease in the model plant Arabidopsis thaliana, quantitative trait loci analysis was performed using a set of recombinant inbred lines derived from a cross between the resistant accession Kashmir-1 and the susceptible accession Columbia glabrous1. We identified and mapped three independent powdery mildew quantitative disease resistance loci, which act additively to confer disease resistance. The locus with the strongest effect on resistance was mapped to a 500-kbp interval on chromosome III.


2020 ◽  
Author(s):  
honggen zhang ◽  
Ruixuan Wang ◽  
Zuopeng Xu ◽  
Jiangning Liu ◽  
Guofang Lan ◽  
...  

Abstract Background: Rice black-streaked dwarf virus (RBSDV) disease is one of the most destructive viral diseases that threatens rice production in China. Breeding of resistant cultivars through multi-gene pyramiding is considered to be an effective way to control the disease, but few resistance genes have been characterized to date.Results; In the present study, we identified T1012, a BC2F6 line from a cross of the japonica variety ‘Wuyujing3’ (recipient) and the indica variety ‘Dular’ (donor), that had improved resistance to RBSDV disease in a field test, and 140 chromosome segment substitution lines (CSSLs) derived from a cross of between T1012 and ‘Wuyujing3’ were developed using marker-assisted selection. Genetic analysis showed that the resistance of T1012 to RBSDV disease was controlled by quantitative trait loci (QTLs). Two QTLs for RBSDV disease resistance located on chromosomes 1 and 4, qRBSDV-1 and qRBSDV-4, were identified, and qRBSDV-4 was repeatedly detected in two environments. Compared to ‘Wuyujing3’, the CSSL containing only the substitution segment covering qRBSDV-4 exhibited significantly decreased disease incidence, indicating that qRBSDV-4 is a reliable resistance QTL with a high breeding value. Furthermore, two linked QTLs, qRBSDV-4-1 and qRBSDV-4-2, were identified within the interval containing qRBSDV-4.Conclusions: The QTLs identified here will provide a useful resource for breeding RBSDV-resistant rice cultivars through marker-assisted selection and establish a foundation for the cloning of RBSDV disease resistance genes.


Sign in / Sign up

Export Citation Format

Share Document