powdery mildew disease
Recently Published Documents


TOTAL DOCUMENTS

188
(FIVE YEARS 71)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Adel Ateyh Esawy ◽  
Mohsen Mohamed Elsharkawy ◽  
Reda Ibrahim Omara ◽  
Mamdouh Abdel Fattah Khalifa ◽  
Fawzya Mohamed Fadel ◽  
...  

Abstract Background Powdery mildew was found in most of the sunflower fields in Egypt, causing severe yellowing of the blade, petiole, stem and calyx, as well as a considerable defoliation during the summer season of 2018. Out of the fungal mycelium from infected leaves, collected from sunflower fields in the four Egyptian Governorates (Kafr El-Sheikh, Gharbia, Giza and El-Beheira), five isolates of powdery mildew pathogen were obtained and identified using morphological and molecular identification methods. Results In 2019 and 2020 seasons, five biocontrol agents (Bacillus subtilis, B. pumilus, Trichoderma harzianum, T. viride and T. koningii) were used to control powdery mildew disease on sunflower plants under field conditions compared with the fungicide (Vectra 10% SC). Treatments were significantly effective for controlling the powdery mildew disease relative to the control. The best treatment for reducing disease parameters (final disease severity (FDS%), area under disease progress curve (AUDPC) and efficacy) than the control was T. koningii. Foliar application of all the tested treatments improved plant height, head and stem diameters and seed yield in relation to untreated plants (control). The components (FDS%, AUDPC and efficacy) were extracted and described approximately 95.251% of the pooled data of seasons 2019 and 2020. In such pooled data, the principal components (PC1, PC2 and PC3) of all disease parameters, plant development parameters and yield components were recorded 76.305, 86.635 and 96.265% of the total variance, respectively. Conclusion A biological control agent, such as T. koningii, can be suggested for disease control based on the experimental findings.


Author(s):  
Anshul Bhatia ◽  
Anuradha Chug ◽  
Amit Prakash Singh ◽  
Ravinder Pal Singh ◽  
Dinesh Singh

2021 ◽  
pp. 509-520
Author(s):  
Anshul Bhatia ◽  
Anuradha Chug ◽  
Amit Prakash Singh ◽  
Ravinder Pal Singh ◽  
Dinesh Singh

Plant Disease ◽  
2021 ◽  
Author(s):  
Mo Zhu ◽  
Xiao Duan ◽  
Haoran Guo ◽  
Wei Huang ◽  
Ke Quan ◽  
...  

Dianthus chinensis is widely cultivated for ornamental and medicinal use in China (Guo et al. 2017). The plant has been used in traditional Chinese medicine for the treatment of urinary problems such as strangury and diuresis (Han et al. 2015). In June and July 2020, powdery mildew-like signs and symptoms were seen on leaves of D. chinensis cultivated on the campus of Inner Mongolia Agricultural University, Hohhot city, Inner Mongolia Province, China. White powder-like masses occurred in irregular shaped lesions on both leaf surfaces and covered up to 50% of leaf area. Some infected leaves were deformed on their edges and some leaf senescence occurred. More than 40 % of plants (n = 180) exhibited these signs and symptoms. Conidiophores (n = 50) of the suspect fungus were unbranched and measured 70 to 140 µm long × 6 to 10 µm wide and had foot cells that were 25 to 48 µm long. Conidia (n = 50) were produced singly, elliptical to cylindrical shaped, 30 to 45 µm long × 12 to 19 µm wide, with length/width ratio of 2.0 to 3.2, and lacked fibrosin bodies. No chasmothecia were found. Based on these morphological characteristics, the fungus was tentatively identified as an Erysiphe sp. (Braun and Cook 2012). Fungal structures were isolated from diseased leaves and genomic DNA of the pathogen extracted utilizing the method described by Zhu et al. (2019). The internal transcribed spacer (ITS) region was amplified by PCR employing the primers PMITS1/PMITS2 (Cunnington et al. 2003) and the amplicon sequenced by Invitrogen (Shanghai, China). The sequence for the powdery mildew fungus (deposited into GenBank under Accession No. MW144997) showed 100 % identity (558/558 bp) with E. buhrii (Accession No. LC009898) that was reported on Dianthus sp. in Japan (Takamatsu et al. 2015). Pathogenicity tests were done by collecting fungal conidia from infected D. chinensis leaves and brushing them onto leaves of four healthy plants. Four uninoculated plants served as controls. Inoculated and uninoculated plants were placed in separate growth chambers maintained at 19 ℃, 65 % humidity, with a 16 h/8 h light/dark period. Nine-days post-inoculation, powdery mildew disease signs appeared on inoculated plants, whereas control plants remained asymptomatic. The same results were obtained for two repeated pathogenicity experiments. The powdery mildew fungus was identified and confirmed as E. buhrii based on morphological and molecular analysis. An Oidium sp. causing powdery mildew on D. chinensis previously was reported in Xinjiang Province, China (Zheng and Yu 1987). This, to the best of our knowledge, is the first report of powdery mildew caused by E. buhrii on D. chinensis in China (Farr and Rossman 2020). The sudden occurrence of this destructive powdery mildew disease on D. chinensis may adversely affect the health, ornamental value and medicinal uses of the plant in China. Identifying the cause of the disease will support efforts for its future control and management.


HortScience ◽  
2021 ◽  
pp. 1-6
Author(s):  
Fulya Baysal-Gurel ◽  
Ravi Bika

Ninebark (Physocarpus opulifolius) is a popular ornamental shrub and considered a hardy and tough plant that can thrive in different environmental conditions and resist diseases. However, powdery mildew, caused by Podosphaera physocarpi, can severelyaffect ninebark, deteriorating the ornamental value and making them unmarketable. Only a few studies have been done in managing powdery mildew of ninebark. The current study focuses on evaluating and identifying effective products (sanitizers, biorational products, and fungicides) for the management of powdery mildew disease of ninebark. A total of 12 treatments, including nontreated control, were studied. The experiment was arranged in randomized complete block design with four-single ‘Mindia Coppertina®’ ninebark plant per treatment and repeated twice. Powdery mildew disease severity, growth parameters, and phytotoxicity were assessed in the study. All treatments significantly reduced the powdery mildew disease severity and disease progress [area under disease progress curve (AUDPC)] compared with the nontreated control. The treatments, such as azoxystrobin + benzovindiflupyr at 0.17 and 0.23 g·L–1 total active ingredients (a.i.) applied, chlorothalonil + propiconazole at 1.12 mL·L–1 total a.i. applied, azoxystrobin + tebuconazole at 0.11 and 0.16 g·L–1 total a.i. applied, and giant knotweed extract [Reynoutria sachalinensis (0.5 mL·L–1 total a.i. applied)] were the most effective treatments in reducing disease severity and disease progress in both trials. The treatments had no significant effects on the plant growth parameters such as height and width. In Expt. 2, azoxystrobin + benzovindiflupyr and hydrogen peroxide + peroxyacetic acid treated plants showed the low level of phytotoxic symptoms. The phytotoxicity of these two treatments in Expt. 2 could be related to higher environmental temperature during the experimental period.


Sign in / Sign up

Export Citation Format

Share Document