Reactive oxygen species are essential mediators in antigen presentation by Kupffer cells

2005 ◽  
Vol 83 (4) ◽  
pp. 336-343 ◽  
Author(s):  
Kosei Maemura ◽  
Qizhi Zheng ◽  
Tatehiko Wada ◽  
Michitaka Ozaki ◽  
Sonshin Takao ◽  
...  
2001 ◽  
Vol 120 (5) ◽  
pp. A361-A361
Author(s):  
K UCHIKURA ◽  
T WADA ◽  
Z SUN ◽  
S HOSHINO ◽  
G BULKLEY ◽  
...  

2010 ◽  
Vol 63 (11-12) ◽  
pp. 827-832 ◽  
Author(s):  
Tatjana Radosavljevic ◽  
Dusan Mladenovic ◽  
Danijela Vucevic ◽  
Rada Jesic-Vukicevic

Introduction. Paracetamol is an effective analgesic/antipyretic drug when used at therapeutic doses. However, the overdose of paracetamol can cause severe liver injury and liver necrosis. The mechanism of paracetamol-induced liver injury is still not completely understood. Reactive metabolite formation, depletion of glutathione and alkylation of proteins are the triggers of inhibition of mitochondrial respiration, adenosine triphosphate depletion and mitochondrial oxidant stress leading to hepatocellular necrosis. Role of oxidative stress in paracetamol-induced liver injury. The importance of oxidative stress in paracetamol hepatotoxicity is controversial. Paracetamol induced liver injury cause the formation of reactive oxygen species. The potent sources of reactive oxygen are mitochondria, neutrophils, Kupffer cells and the enzyme xatnine oxidase. Free radicals lead to lipid peroxidation, enzymatic inactivation and protein oxidation. Role of mitochondria in paracetamol-induced oxidative stress. The production of mitochondrial reactive oxygen species is increased, and the glutathione content is decreased in paracetamol overdose. Oxidative stress in mitochondria leads to mito?chondrial dysfunction with adenosine triphosphate depletion, increase mitochondrial permeability transition, deoxyribonu?cleic acid fragmentation which contribute to the development of hepatocellular necrosis in the liver after paracetamol overdose. Role of Kupffer cells in paracetamol-induced liver injury. Paracetamol activates Kupffer cells, which then release numerous cytokines and signalling molecules, including nitric oxide and superoxide. Kupffer cells are important in peroxynitrite formation. On the other hand, the activated Kupffer cells release anti-inflammatory cytokines. Role of neutrophils in paracetamol-induced liver injury. Paracetamol-induced liver injury leads to the accumulation of neutrophils, which release lysosomal enzymes and generate superoxide anion radicals through the enzyme nicotinamide adenine dinucleotide phosphate oxidase. Hydrogen peroxide, which is influenced by the neutrophil-derived enzyme myeloperoxidase, generates hypochlorus acid as a potent oxidant. Role of peroxynitrite in paracetamol-induced oxidative stress. Superoxide can react with nitric oxide to form peroxynitrite, as a potent oxidant. Nitrotyrosine is formed by the reaction of tyrosine with peroxynitrite in paracetamol hepatotoxicity. Conclusion. Overdose of paracetamol may produce severe liver injury with hepatocellular necrosis. The most important mechanisms of cell injury are metabolic activation of paracetamol, glutathione depletion, alkylation of proteins, especially mitochondrial proteins, and formation of reactive oxygen/nitrogen species.


1988 ◽  
Vol 23 (6) ◽  
pp. 688-694 ◽  
Author(s):  
K. J. Virk ◽  
N. K. Ganguly ◽  
R. C. Mahajan ◽  
S. R. Bhushnurmath ◽  
J. B. Dilawari

2004 ◽  
Vol 127 (5) ◽  
pp. 1488-1496 ◽  
Author(s):  
Kazuaki Tejima ◽  
Masahiro Arai ◽  
Hitoshi Ikeda ◽  
Tomoaki Tomiya ◽  
Mikio Yanase ◽  
...  

2009 ◽  
Vol 62 (11-12) ◽  
pp. 547-553 ◽  
Author(s):  
Tatjana Radosavljevic ◽  
Dusan Mladenovic ◽  
Danijela Vucevic

Introduction. Oxidative stress plays an important role in pathogenesis of alcoholic liver injury. The main source of free oxygen species is cytochrome P450-dependent monooxygenase, which can be induced by ethanol. Role of cytochrome P4502E1 in ethanol-induced oxidative stress. Reactive oxygen species produced by this enzyme are more important in intracellular oxidative damage compared to species derived from activated phagocytes. Free radicals lead to lipid peroxidation, enzymatic inactivation and protein oxidation. Role of mitochondria in alcohol-induced oxidative stress. Production of mitochondrial reactive oxygen species is increased, and glutathione content is decreased in chronically ethanolfed animals. Oxidative stress in mitochondria leads to mitochondrial DNA damage and has a dual effect on apoptosis. Role of Kupffer cells in alcohol-induced liver injury. Chronic ethanol consumption is associated with increased release of endotoxin from gut lumen into portal circulation. Endotoxin activates Kupffer cells, which then release proinflammatory cytokines and oxidants. Role of neutrophils in alcohol-induced liver injury. Alcoholic liver injury leads to the accumulation of neutrophils, which release reactive oxygen species and lysosomal enzymes and contribute to hepatocyte damage and necrosis. Role of nitric oxide in alcohol-induced oxidative stress. High amounts of nitric oxide contribute to the oxidative damage, mainly by generating peroxynitrites. Role of antioxidants in ethanol-induced oxidative stress. Chronic ethanol consumption is associated with reduced liver glutathione and ?-tocopherol level and with reduced superoxide dismutase, catalase and glutathione peroxidase activity. Conclusion. Oxidative stress in alcoholic liver disease is a consequence of increased production of oxidants and decreased antioxidant defense in the liver.


2003 ◽  
Vol 192 (4) ◽  
pp. 183-188 ◽  
Author(s):  
Antonella Marangoni ◽  
Rita Aldini ◽  
Massimo Guardigli ◽  
Vittorio Sambri ◽  
Lorenzo Giacani ◽  
...  

2004 ◽  
Vol 287 (3) ◽  
pp. G620-G626 ◽  
Author(s):  
Keiichiro Uchikura ◽  
Tatehiko Wada ◽  
Sumito Hoshino ◽  
Yuichi Nagakawa ◽  
Takashi Aiko ◽  
...  

Fas-Fas ligand (FasL)-dependent pathways exert a suppressive effect on inflammatory responses in immune-privileged organs. FasL expression in hepatic Kupffer cells (KC) has been implicated in hepatic immunoregulation. In this study, modulation of FasL expression of KC by endogenous gut-derived bacterial LPS and the role of reactive oxygen species (ROS) as potential mediators of FasL expression in KC were investigated. LPS stimulation of KC resulted in upstream ROS generation and, subsequently, increased FasL expression and consequent Jurkat cell (Fas-positive) apoptosis. The NADPH oxidase and xanthine oxidase enzymatic pathways appear to be major sources of this upstream ROS generation. Increased FasL expression was blocked by antioxidants and by enzymatic blocking of ROS generation. Exogenous administration of H2O2stimulated KC FasL expression and subsequent Jurkat cell apoptosis. Intracellular endogenous ROS generation may therefore represent an important signal transduction pathway for FasL expression in KC.


Sign in / Sign up

Export Citation Format

Share Document