Induction of Ym1/2 in mouse bone marrow‐derived mast cells by IL‐4 and identification of Ym1/2 in connective tissue type‐like mast cells derived from bone marrow cells cultured with IL‐4 and stem cell factor

2005 ◽  
Vol 83 (5) ◽  
pp. 468-474 ◽  
Author(s):  
Eunkyung Lee ◽  
Jumin Yook ◽  
Kyungmi Haa ◽  
Hyeun Wook Chang
Blood ◽  
1991 ◽  
Vol 78 (3) ◽  
pp. 645-650 ◽  
Author(s):  
TR Ulich ◽  
J del Castillo ◽  
ES Yi ◽  
S Yin ◽  
I McNiece ◽  
...  

Abstract Recombinant rat stem cell factor (rrSCF) administered to rats as a single intravenous injection causes a dose-dependent neutrophilia and lymphocytosis as well as the appearance of immature myeloid cells and occasional blast cells in the circulation. Neutrophilia begins at 2 hours, peaks at 4 to 6 hours, and subsides between 12 and 24 hours. Lymphocytosis occurs at 0.5 hours and has subsided by 2 hours. rrSCF- induced neutrophilia and lymphocytosis are abrogated by boiling, demonstrating that endotoxin-contamination of the rrSCF preparation is not responsible for the observed hematologic effects. The bone marrow at 6 hours after injection of rrSCF shows a left-shifted myeloid and erythroid hyperplasia as evidenced by significant increases in the absolute numbers of morphologically recognizable early myeloid and erythroid precursors. A concurrent decrease in the absolute numbers of mature marrow neutrophils is noted, suggesting that the release of marrow neutrophils contributes to the peripheral neutrophilia. After 2 weeks of daily injections of rrSCF, bone marrow smears demonstrate a remarkable mast cell hyperplasia accompanied by a decrease in total marrow cellularity and by a striking erythroid and lymphoid hypoplasia. rrSCF also causes mast cells to appear in the circulation and causes a systemic increase in embryonic connective tissue-type, but not mucosal- type, mast cells. In vitro long-term culture of lineage-depleted mouse bone marrow cells with rrSCF results in an almost pure outgrowth of mast cells.


Blood ◽  
1991 ◽  
Vol 78 (3) ◽  
pp. 645-650
Author(s):  
TR Ulich ◽  
J del Castillo ◽  
ES Yi ◽  
S Yin ◽  
I McNiece ◽  
...  

Recombinant rat stem cell factor (rrSCF) administered to rats as a single intravenous injection causes a dose-dependent neutrophilia and lymphocytosis as well as the appearance of immature myeloid cells and occasional blast cells in the circulation. Neutrophilia begins at 2 hours, peaks at 4 to 6 hours, and subsides between 12 and 24 hours. Lymphocytosis occurs at 0.5 hours and has subsided by 2 hours. rrSCF- induced neutrophilia and lymphocytosis are abrogated by boiling, demonstrating that endotoxin-contamination of the rrSCF preparation is not responsible for the observed hematologic effects. The bone marrow at 6 hours after injection of rrSCF shows a left-shifted myeloid and erythroid hyperplasia as evidenced by significant increases in the absolute numbers of morphologically recognizable early myeloid and erythroid precursors. A concurrent decrease in the absolute numbers of mature marrow neutrophils is noted, suggesting that the release of marrow neutrophils contributes to the peripheral neutrophilia. After 2 weeks of daily injections of rrSCF, bone marrow smears demonstrate a remarkable mast cell hyperplasia accompanied by a decrease in total marrow cellularity and by a striking erythroid and lymphoid hypoplasia. rrSCF also causes mast cells to appear in the circulation and causes a systemic increase in embryonic connective tissue-type, but not mucosal- type, mast cells. In vitro long-term culture of lineage-depleted mouse bone marrow cells with rrSCF results in an almost pure outgrowth of mast cells.


Blood ◽  
1994 ◽  
Vol 83 (12) ◽  
pp. 3491-3499 ◽  
Author(s):  
G Molineux ◽  
A Migdalska ◽  
J Haley ◽  
GS Evans ◽  
TM Dexter

Abstract To examine the potential role of stem-cell factor (SCF) in cancer chemotherapy, we have administered it to mice either before or after 5- fluorouracil (5-FU). When polyethylene glycolated (PEG-ylated) SCF was administered to mice before 5-FU, it had a significant sensitizing effect on primitive bone marrow cells. Examination of the hematopoietic status of these mice showed that the damage caused by 5-FU to both bone marrow and spleen hematopoiesis was exaggerated when it was preceded by SCF. SCF given before each of two 5-FU treatments at 7-day intervals resulted in the death of all treated mice. The time of death and hematopoietic status of these animals are compatible with the onset of hypoplastic marrow failure leading to pancytopenia and death. SCF given after 5-FU had little impact either on the initial degree of hematopoietic damage or subsequent recovery. Gut populations were similarly sensitized to 5-FU by prior treatment with SCF, and the damage caused to intestinal populations was greater than that resulting from 5-FU alone. This indicates that the different tissues may be similarly sensitized by SCF. The sensitizing effect of SCF was reversed by concurrent administration of transforming growth factor (TGF)-beta 3, and survival of the majority of the mice was ensured. Examination of hematopoiesis in mice treated concurrently with SCF and TGF-beta 3 showed that the degree of marrow and spleen damage had reverted to that caused by 5-FU alone. In further experiments, 100% survival and normal hematopoiesis could be attained by transplantation of 1 million syngeneic bone marrow cells 24 hours after 5-FU treatment following SCF sensitization. These data indicate that PEG-ylated SCF can sensitize normally resistant hematopoietic and gut stem cells to the effects of 5- FU. This sensitization resulted in effective eradication of hematopoiesis in SCF-pretreated/5-FU-treated animals and their subsequent death from marrow failure. These findings imply that SCF pretreatment may represent a novel method of increasing the effectiveness of conventional chemotherapy, making marrow ablation more effective without drug dose escalation and perhaps sensitizing some tumor cells to the effects of therapy.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 999-999
Author(s):  
Lynette C.Y. Chee ◽  
Jean Hendy ◽  
Louise Purton ◽  
Grant A. McArthur

Abstract Abstract 999 All-trans retinoic acid (ATRA) is used successfully to treat acute promyelocytic leukemia (APML), however, to date it has not shown promise in treating other AML subtypes. ATRA has been shown to enhance hematopoietic stem cell (HSC) self-renewal (requiring RARγ activation) but promotes differentiation of myeloid progenitors likely through RARα activation. We hypothesized that (1) the lack of success of ATRA in treating other AML subtypes may be due to the potential ability of ATRA to enhance self-renewal of the leukemic stem cell and (2) the use of a specific RARα agonist may have more promise in enhancing AML differentiation. We therefore compared the effects of pharmacological levels (1μM) of ATRA and an RARα-specific agonist, NRX195183, on bone marrow cells harvested from a Cre-inducible conditional AML1-ETO (AE) knock-in murine model. AE cells cultured for 2 weeks with ATRA showed significant reductions in the proportions of mature myeloid cells (Gr1brightCD11b+) by fluorescence activated cell sorting (FACS) (DMSO: 14.2±4.3%, ATRA: 4.0±1.6%, p=0.04, n=4). By 4 weeks of culture, ATRA-treated AE cells had increased blast and reduced maturing myeloid cell proportions (Blasts %: DMSO 70.2 ± 3.0, ATRA 95.3 ± 1.2, p=0.08; Intermediate %: DMSO 14.3 ± 2.6, ATRA 3.8 ± 1.0, p=0.01; Neutrophils %: DMSO 2.3± 1.0, ATRA 0.3 ± 0.2, p=0.07, n=6). Furthermore, ATRA potentiated the clonogenicity of the AE cells after 5 weeks of treatment in vitro (Mean±SEM for colony #/ 5×104 cells: DMSO 505.8±337.0, ATRA 4394±388.9, p=0.001; n=6). In contrast, AE cells cultured for 2 weeks with NRX195183 showed significant increases in the proportions of mature myeloid cells by FACS (DMSO: 15.8±3.5%, NRX195183 26.7±3.0%, p=0.03; n=5). By 4 weeks of culture, NRX195183-treated AE cells had decreased blast and increased maturing myeloid cell proportions (Blasts %: DMSO 82.4±3.0, NRX195183 58.8±9.1, p=0.03; Intermediate %: DMSO 14.5±2.5, NRX195183 29.0±6.8, p=0.07; Neutrophils %: DMSO 1.6±0.8, NRX195183 8.2±4.7 p=ns; DMSO n=8, NRX195183 n=5). Moreover, NRX195183 reduced the clonogenicity of the AE cells after 5 weeks of treatment in vitro (Mean±SEM for colony #/ 5×104 cells DMSO 554.8±252.6, NRX195183 82.6±61.6, p=0.05; n=8). Short-term in vivo transplants of fetal liver cells overexpressing the truncated AE gene, AE9a, into sublethally irradiated recipients revealed similar findings in the NRX195183-treated mice with a decrease in blasts and an increase in mature neutrophils in the peripheral blood on morphological analysis after 4 weeks of treatment (Blasts x106/ml: DMSO 3.1±1.0, NRX195183 0.9±0.3, p=0.08; Neutrophils x106/ml: DMSO 0.5±0.1, NRX195183 0.8±0.1, p=0.04; DMSO n=16, NRX195183 n=11). Taken together, these findings support a model whereby ATRA promotes self-renewal of leukemic blasts whilst NRX195183 has the opposing effect. To understand the mechanism by which ATRA promotes self-renewal in AE cells, we performed genome-wide gene expression analyses on the ATRA- versus control-treated AE cells. This revealed 16 differentially upregulated genes after 24 hours of treatment. Using Ingenuity Pathway Analysis, the top scoring network in the ATRA-treated AE cells was cell-to-cell signalling and interaction (p=1.1E-7-2.4E-3), lipid metabolism (p=2.3E-7-2.0E-3) and small molecule biochemistry (p=2.3E-7-2.1E-3); SERPINE1 and BMP2 were the genes with the highest connectivity within the network interacting with molecules known for their roles in tumorigenesis, including AKT, NF-kβ complex and TGFβ1. SERPINE1 upregulation has been shown to be RARα-mediated whilst BMP2 has been shown to be a RARγ-regulated gene. Interestingly, the specific RARγ agonist, NRX204723, had no effect on the clonogenic potential of these AE progenitors thus raising the hypothesis that both RARα and RARγ activation are required to promote self-renewal of the AE progenitors. Further studies using both RARα/RARγ agonists are warranted to assess if the ATRA effects on AE cells are phenocopied. Collectively, these findings reveal the contrasting roles of specific RARα activation in promoting loss of self-renewal ability and enhancing differentiation in the AE cells whilst ATRA promotes clonogenicity of these cells. This has potential significant implications in AML treatment as specific RARα agonists may be beneficial in improving the efficacy of current treatment modalities to achieve sustained remission in other AML subtypes. Disclosures: No relevant conflicts of interest to declare.


1991 ◽  
Vol 174 (1) ◽  
pp. 125-131 ◽  
Author(s):  
M Tsai ◽  
L S Shih ◽  
G F Newlands ◽  
T Takeishi ◽  
K E Langley ◽  
...  

Mast cell development is a complex process that results in the appearance of phenotypically distinct populations of mast cells in different anatomical sites. Mice homozygous for mutations at the W or S1 locus exhibit several phenotypic abnormalities, including a virtual absence of mast cells in all organs and tissues. Recent work indicates that W encodes the c-kit tyrosine kinase receptor, whereas S1 encodes a c-kit ligand that we have designated stem cell factor (SCF). Recombinant or purified natural forms of the c-kit ligand induce proliferation of certain mast cell populations in vitro, and injection of recombinant SCF permits mast cells to develop in mast cell-deficient WCB6F1-S1/S1d mice. However, the effects of SCF on mast cell proliferation, maturation, and phenotype in normal mice in vivo were not investigated. We now report that local administration of SCF in vivo promotes the development of connective tissue-type mast cells (CTMC) in the skin of mice and that systemic administration of SCF induces the development of both CTMC and mucosal mast cells (MMC) in rats. Rats treated with SCF also develop significantly increased tissue levels of specific rat mast cell proteases (RMCP) characteristic of either CTMC (RMCP I) or MMC (RMCP II). These findings demonstrate that SCF can induce the expansion of both CTMC and MMC populations in vivo and show that SCF can regulate at least one cellular lineage that expresses c-kit, the mast cell, through complex effects on proliferation and maturation.


Sign in / Sign up

Export Citation Format

Share Document