Responses to Metabotropic Glutamate Receptor Activation in Cerebellar Purkinje Cells: Induction of an Inward Current

1992 ◽  
Vol 4 (9) ◽  
pp. 832-839 ◽  
Author(s):  
C. Staub ◽  
I. Vranesic ◽  
T. Knöpfel
2015 ◽  
Vol 112 (50) ◽  
pp. 15474-15479 ◽  
Author(s):  
Liang Zhou ◽  
Dong Yang ◽  
De-Juan Wang ◽  
Ya-Jun Xie ◽  
Jia-Huan Zhou ◽  
...  

Protein Numb, first identified as a cell-fate determinant in Drosophila, has been shown to promote the development of neurites in mammals and to be cotransported with endocytic receptors in clathrin-coated vesicles in vitro. Nevertheless, its function in mature neurons has not yet been elucidated. Here we show that cerebellar Purkinje cells (PCs) express high levels of Numb during adulthood and that conditional deletion of Numb in PCs is sufficient to impair motor coordination despite maintenance of a normal cerebellar cyto-architecture. Numb proved to be critical for internalization and recycling of metabotropic glutamate 1 receptor (mGlu1) in PCs. A significant decrease of mGlu1 and an inhibition of long-term depression at the parallel fiber–PC synapse were observed in conditional Numb knockout mice. Indeed, the trafficking of mGlu1 induced by agonists was inhibited significantly in these mutants, but the expression of ionotropic glutamate receptor subunits and of mGlu1-associated proteins was not affected by the loss of Numb. Moreover, transient and persistent forms of mGlu1 plasticity were robustly induced in mutant PCs, suggesting that they do not require mGlu1 trafficking. Together, our data demonstrate that Numb is a regulator for constitutive expression and dynamic transport of mGlu1.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 416 ◽  
Author(s):  
Masanobu Kano ◽  
Takaki Watanabe

The cerebellum is a brain structure involved in coordination, control, and learning of movements, as well as certain aspects of cognitive function. Purkinje cells are the sole output neurons from the cerebellar cortex and therefore play crucial roles in the overall function of the cerebellum. The type-1 metabotropic glutamate receptor (mGluR1) is a key “hub” molecule that is critically involved in the regulation of synaptic wiring, excitability, synaptic response, and synaptic plasticity of Purkinje cells. In this review, we aim to highlight how mGluR1 controls these events in Purkinje cells. We also describe emerging evidence that altered mGluR1 signaling in Purkinje cells underlies cerebellar dysfunctions in several clinically relevant mouse models of human ataxias.


Sign in / Sign up

Export Citation Format

Share Document