Towards an acoustic-based coupled observation and modelling system for monitoring and predicting ecosystem dynamics of the open ocean

2012 ◽  
Vol 14 (4) ◽  
pp. 605-615 ◽  
Author(s):  
Nils Olav Handegard ◽  
Louis du Buisson ◽  
Patrice Brehmer ◽  
Stewart J Chalmers ◽  
Alex De Robertis ◽  
...  
2020 ◽  
Author(s):  
Laura Cotton ◽  
David Evans ◽  
Daniela Schmidt

<p>The Eocene-Oligocene transition (EOT) is one of the most dramatic climate shifts of the Cenozoic with severe consequences for reef ecosystems. The onset of continental Antarctic glaciation is associated with widespread environmental change, resulting in a global peak in biotic turnover. Whilst numerous studies of the biotic response to the changes at the EOT have been carried out, most high-resolution studies consist of open ocean records of marine plankton and predominantly single groups of organisms. However, this is not representative of the ocean system as a whole and does not provide a holistic view of mechanism of restructuring of the marine ecosystems. The shelf seas and reefs are some of the most diverse and fundamentally important ecosystems of the oceans. Long-term diversity loss across the EOT has been shown in several macrofossil studies, but mainly at low resolution, and recovery is not well understood.  Many shelf species are ecosystem engineers whose loss and recovery have profound implications for the entire ecosystem. Understanding these interactions will provide insights into shallow marine ecosystems and their response to major climate perturbations.</p><p>The Tanzanian Drilling Project EOT record (TDP 11, 12, 17) is recognised globally for its completeness and exceptionally preserved calcareous microfossils. It is most importantly, though, a rare record of both shallow water organisms and open ocean plankton. The latter are fundamentally important for reconstructions of the environment and a globally calibrated timescale. Here we draw together a unique dataset of high-resolution mollusc, Dasycladaceae, bryozoan, larger benthic foraminifers, coral, smaller benthic foraminifera, trace element and isotope records from the EOT. The response and recovery of these species is compared with known, modern physiology of each group to provide a complete picture of the shallow marine ecosystem response.</p><p>Following rapid extinctions within the larger foraminifera during the transition, molluscs, Dasycladaceae and bryozoans all show increases in abundance, indicating a major shift in shelf ecosystem composition. These assemblage changes are coincident with a period of more positive values in d<sup>13</sup>C of both benthic and planktonic foraminifera and changes in trace element values. Comparison with the open ocean record of planktonic foraminiferal, pteropod, and nannofossils confirm these assemblage changes are a biological, rather than sedimentological response and additionally support a that a transition to more eutrophic conditions took place. an environmental framework of traditional and novel geochemistry, indicate that increased nutrient fluxes played a pivotal role in restructuring shelf ecosystem dynamics and therefore offers new insight into mechanisms of reorganisation under ecosystem loss and environmental change.</p>


2020 ◽  
Author(s):  
Katherine M. Smith ◽  
Skyler Kern ◽  
Peter E. Hamlington ◽  
Marco Zavatarelli ◽  
Nadia Pinardi ◽  
...  

Abstract. We present a newly developed reduced-order biogeochemical flux model that is complex and flexible enough to capture open-ocean ecosystem dynamics, but reduced enough to incorporate into highly resolved numerical simulations with limited additional computational cost. The reduced-order model, which is derived from the full 56 state variable Biogeochemical Flux Model (BFM56; Vichi et al. (2007)), follows a biological and chemical functional group approach and allows for the development of critical non-Redfield nutrient ratios. Matter is expressed in units of carbon, nitrogen, and phosphate, following techniques used in more complex models. To reduce the overall computational cost and to focus on open-ocean conditions, the reduced model eliminates certain processes, such as benthic, silicate, and iron influences, and parameterizes others, such as the bacterial loop. The model explicitly tracks 17 state variables, divided into phytoplankton, zooplankton, dissolved organic matter, particulate organic matter, and nutrient groups. It is correspondingly called the Biogeochemical Flux Model 17 (BFM17). After providing a detailed description of BFM17, we couple it with the one-dimensional Princeton Ocean Model (POM) for validation using observational data from the Sargasso Sea. Results show good agreement with the observational data and with corresponding results from BFM56, including the ability to capture the subsurface chlorophyll maximum and bloom intensity. In comparison to previous reduced-order models of similar size, BFM17 provides improved correlations between model output and field data, indicating that significant improvements in the reproduction of in situ data can be achieved with a low number of variables, while maintaining the functional group approach.


2020 ◽  
Vol 638 ◽  
pp. 149-164
Author(s):  
GM Svendsen ◽  
M Ocampo Reinaldo ◽  
MA Romero ◽  
G Williams ◽  
A Magurran ◽  
...  

With the unprecedented rate of biodiversity change in the world today, understanding how diversity gradients are maintained at mesoscales is a key challenge. Drawing on information provided by 3 comprehensive fishery surveys (conducted in different years but in the same season and with the same sampling design), we used boosted regression tree (BRT) models in order to relate spatial patterns of α-diversity in a demersal fish assemblage to environmental variables in the San Matias Gulf (Patagonia, Argentina). We found that, over a 4 yr period, persistent diversity gradients of species richness and probability of an interspecific encounter (PIE) were shaped by 3 main environmental gradients: bottom depth, connectivity with the open ocean, and proximity to a thermal front. The 2 main patterns we observed were: a monotonic increase in PIE with proximity to fronts, which had a stronger effect at greater depths; and an increase in PIE when closer to the open ocean (a ‘bay effect’ pattern). The originality of this work resides on the identification of high-resolution gradients in local, demersal assemblages driven by static and dynamic environmental gradients in a mesoscale seascape. The maintenance of environmental gradients, specifically those associated with shared resources and connectivity with an open system, may be key to understanding community stability.


Sign in / Sign up

Export Citation Format

Share Document