Maize streak virus-resistant transgenic maize: a first for Africa

2007 ◽  
Vol 5 (6) ◽  
pp. 759-767 ◽  
Author(s):  
Dionne N. Shepherd ◽  
Tichaona Mangwende ◽  
Darren P. Martin ◽  
Marion Bezuidenhout ◽  
Frederik J. Kloppers ◽  
...  
2001 ◽  
Vol 14 (5) ◽  
pp. 609-617 ◽  
Author(s):  
Krisztina Nikovics ◽  
Julietta Simidjieva ◽  
Adrian Peres ◽  
Ferhan Ayaydin ◽  
Taras Pasternak ◽  
...  

It is believed that geminiviral DNA replication is coupled to the cell-cycle regulatory complex of the plant cell and that the virus-early (complementary or C sense) gene products REP and REPA may be able to manipulate the regulation of the cycle. In this study, we examined expression from the promoters of Maize streak virus (MSV) in transgenic maize plants and cells to determine whether they showed cell-cycle specificity. Histochemical staining of plant roots containing “long and short” C-sense promoter sequences upstream of the GUS (β-glucuronidase) reporter gene showed that promoter activity was restricted to the meristematic region of the roots and was enhanced by 2,4-dichlorophenoxy acetic acid (2,4-D) treatment. Analysis of reporter gene and cell-cycle-specific gene transcript levels coupled with flow cytometric data in synchronized transgenic maize cells revealed that all of the MSV promoters showed cell-cycle specificity. The coat protein gene promoter showed highest activity in early G2, whereas the C-sense promoter sequences produced two peaks of activity in the S and G2 cell-cycle phases.


Author(s):  
Mary Emeraghi ◽  
Enoch G. Achigan-Dako ◽  
Chibuzo N. C. Nwaoguala ◽  
Happiness Oselebe

1991 ◽  
Vol 8 (1) ◽  
pp. 38-42 ◽  
Author(s):  
G. D.J. van Rensburg ◽  
J. H. Giliomee ◽  
K. L. Pringle

2008 ◽  
pp. 263-272
Author(s):  
D.P. Martin ◽  
D.N. Shepherd ◽  
E.P. Rybicki

Plant Disease ◽  
2008 ◽  
Vol 92 (6) ◽  
pp. 982-982 ◽  
Author(s):  
T. van Antwerpen ◽  
S. A. McFarlane ◽  
G. F. Buchanan ◽  
D. N. Shepherd ◽  
D. P. Martin ◽  
...  

Prior to the introduction of highly resistant sugarcane varieties, Sugarcane streak virus (SSV) caused serious sugar yield losses in southern Africa. Recently, sugarcane plants with streak symptoms have been identified across South Africa. Unlike the characteristic fine stippling and streaking of SSV, the symptoms resembled the broader, elongated chlorotic lesions commonly observed in wild grasses infected with the related Maize streak virus (MSV). Importantly, these symptoms have been reported on a newly released South African sugarcane cultivar, N44 (resistant to SSV). Following a first report from southern KwaZulu-Natal, South Africa in February 2006, a survey in May 2007 identified numerous plants with identical symptoms in fields of cvs. N44, N27, and N36 across the entire South African sugarcane-growing region. Between 0.04 and 1.6% of the plants in infected fields had streak symptoms. Wild grass species with similar streaking symptoms were observed adjacent to one of these fields. Potted stalks collected from infected N44 plants germinated in a glasshouse exhibited streak symptoms within 10 days. Virus genomes were isolated and sequenced from a symptomatic N44 and Urochloa plantaginea plants collected from one of the surveyed fields (1). Phylogenetic analysis determined that while viruses from both plants closely resembled the South African maize-adapted MSV strain, MSV-A4 (>98.5% genome-wide sequence identity), they were only very distantly related to SSV (~65% identity; MSV-Sasri_S: EU152254; MSV-Sasri_G: EU152255). To our knowledge, this is the first confirmed report of maize-adapted MSV variants in sugarcane. In the 1980s, “MSV strains” were serologically identified in sugarcane plants exhibiting streak symptoms in Reunion and Mauritius, but these were not genetically characterized (2,3). There have been no subsequent reports on the impact of such MSV infections on sugarcane cultivation on these islands. Also, at least five MSV strains have now been described, only one of which, MSV-A, causes significant disease in maize and it is unknown which strain was responsible for sugarcane diseases on these islands in the 1980s (2,3). MSV-A infections could have serious implications for the South African sugar industry. Besides yield losses in infected plants due to stunting and reduced photosynthesis, the virus could be considerably more difficult to control than it is in maize because sugarcane is vegetatively propagated and individual plants remain within fields for years rather than months. Moreover, there is a large MSV-A reservoir in maize and other grasses everywhere sugarcane is grown in southern Africa. References: (1) B. E. Owor et al. J Virol. Methods 140:100, 2007. (2) M. S. Pinner and P. G. Markham. J. Gen. Virol. 71:1635, 1990. (3) M. S. Pinner et al. Plant Pathol. 37:74, 1998.


Sign in / Sign up

Export Citation Format

Share Document