Reward prediction error signals associated with a modified time estimation task

2007 ◽  
Vol 44 (6) ◽  
pp. 913-917 ◽  
Author(s):  
Clay B. Holroyd ◽  
Olave E. Krigolson
2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Chikara Ishii ◽  
Jun’ichi Katayama

AbstractIn action monitoring, i.e., evaluating an outcome of our behavior, a reward prediction error signal is calculated as the difference between actual and predicted outcomes and is used to adjust future behavior. Previous studies demonstrate that this signal, which is reflected by an event-related brain potential called feedback-related negativity (FRN), occurs in response to not only one's own outcomes, but also those of others. However, it is still unknown if predictions of different actors' performance interact with each other. Thus, we investigated how predictions from one’s own and another’s performance history affect each other by manipulating the task difficulty for participants themselves and their partners independently. Pairs of participants performed a time estimation task, randomly switching the roles of actor and observer from trial to trial. Results show that the history of the other’s performance did not modulate the amplitude of the FRN for the evaluation of one’s own outcomes. In contrast, the amplitude of the observer FRN for the other’s outcomes differed according to the frequency of one’s own action outcomes. In conclusion, the monitoring system tracks the histories of one’s own and observed outcomes separately and considers information related to one’s own action outcomes to be more important.


2020 ◽  
Author(s):  
Pramod Kaushik ◽  
Jérémie Naudé ◽  
Surampudi Bapi Raju ◽  
Frédéric Alexandre

AbstractClassical Conditioning is a fundamental learning mechanism where the Ventral Striatum is generally thought to be the source of inhibition to Ventral Tegmental Area (VTA) Dopamine neurons when a reward is expected. However, recent evidences point to a new candidate in VTA GABA encoding expectation for computing the reward prediction error in the VTA. In this system-level computational model, the VTA GABA signal is hypothesised to be a combination of magnitude and timing computed in the Peduncolopontine and Ventral Striatum respectively. This dissociation enables the model to explain recent results wherein Ventral Striatum lesions affected the temporal expectation of the reward but the magnitude of the reward was intact. This model also exhibits other features in classical conditioning namely, progressively decreasing firing for early rewards closer to the actual reward, twin peaks of VTA dopamine during training and cancellation of US dopamine after training.


2018 ◽  
Vol 83 (9) ◽  
pp. S164
Author(s):  
Hanna Keren ◽  
Nathan Fox ◽  
Ellen Leibenluft ◽  
Daniel S. Pine ◽  
Argyris Stringaris

2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S11-S11
Author(s):  
Teresa Katthagen ◽  
Jakob Kaminski ◽  
Andreas Heinz ◽  
Ralph Buchert ◽  
Florian Schlagenhauf

Abstract Background Increased striatal dopamine synthesis capacity (DSC) has consistently been reported in patients with schizophrenia (Sz). However, the functional mechanism translating this into behavior and symptoms remains unclear. It has been proposed that heightened striatal dopamine may blunt dopaminergic reward prediction error (RPE) signaling during reinforcement learning. Methods In this study, we investigated striatal DSC and RPEs and their association in unmedicated Sz and healthy controls. 23 healthy controls (HC) and 20 unmedicated Sz took part in an FDOPA-PET scan measuring DSC and underwent fMRI scanning, where they performed a reversal learning paradigm. We compared groups regarding DSC und neural RPE signals and probed the respective correlation (23 HC and 16 Sz for both measures). Results There was no significant difference between HC and Sz in DSC. Taking into account comorbid alcohol abuse revealed that only patients without such abuse showed elevated DSC in the associative and sensorimotor striatum, while those with abuse did not differ from HC. Patients performed worse during learning, accompanied by a reduced RPE signal in the ventral striatum. In HC, the DSC in the limbic striatum correlated with higher RPE signaling, while there was no significant association in patients. DSC in the associative striatum correlated with higher positive symptoms, and blunted RPE signaling was associated with negative symptoms. Discussion Our results suggest that dopamine modulation of RPE is impaired in schizophrenia. Furthermore, we observed a dissociation with elevated DSC in the associative and sensorimotor striatum contributing to positive symptoms and blunted RPE in the ventral striatum to negative symptoms.


2019 ◽  
Vol 39 (25) ◽  
pp. 5010-5017 ◽  
Author(s):  
Ehsan Sedaghat-Nejad ◽  
David J. Herzfeld ◽  
Reza Shadmehr

Sign in / Sign up

Export Citation Format

Share Document