Mobilization of metals from uranium mine waste: the role of pyoverdines produced by Pseudomonas fluorescens

Geobiology ◽  
2010 ◽  
Vol 8 (4) ◽  
pp. 278-292 ◽  
Author(s):  
F. EDBERG ◽  
B. E. KALINOWSKI ◽  
S. J. M. HOLMSTRÖM ◽  
K. HOLM
2017 ◽  
Vol 11 (3) ◽  
pp. 38-47
Author(s):  
S. Zayed Mona ◽  
Abd El-Moneim Hegazi Ghada ◽  
Mohammed Salem Hanaa ◽  
Mohammed Ibrahim Ali Adas Walaa

2008 ◽  
Vol 74 (12) ◽  
pp. 3644-3651 ◽  
Author(s):  
Wook Kim ◽  
Stuart B. Levy

ABSTRACT The annotation process of a newly sequenced bacterial genome is largely based on algorithms derived from databases of previously defined RNA and protein-encoding gene structures. This process generally excludes the possibility that the two strands of a given stretch of DNA can each harbor a gene in an overlapping manner. While the presence of such structures in eukaryotic genomes is considered to be relatively common, their counterparts in prokaryotic genomes are just beginning to be recognized. Application of an in vivo expression technology has previously identified 22 discrete genetic loci in Pseudomonas fluorescens Pf0-1 that were specifically activated in the soil environment, of which 10 were present in an antisense orientation relative to previously annotated genes. This observation led to the hypothesis that the physiological role of overlapping genetic structures may be relevant to growth conditions outside artificial laboratory media. Here, we examined the role of one of the overlapping gene pairs, iiv19 and leuA2, in soil. Although iiv19 was previously demonstrated to be preferentially activated in the soil environment, its absence did not alter the ability of P. fluorescens to colonize or survive in soil. Surprisingly, the absence of the leuA2 gene conferred a fitness advantage in the soil environment when leucine was supplied exogenously. This effect was determined to be independent of the iiv19 gene, and further analyses revealed that amino acid antagonism was the underlying mechanism behind the observed fitness advantage of the bacterium in soil. Our findings provide a potential mechanism for the frequent occurrence of auxotrophic mutants of Pseudomonas spp. in the lungs of cystic fibrosis patients.


2013 ◽  
Vol 65 (2) ◽  
pp. 332-344 ◽  
Author(s):  
Jo Ellen Hinck ◽  
Greg Linder ◽  
James K. Otton ◽  
Susan E. Finger ◽  
Edward Little ◽  
...  

1991 ◽  
Vol 279 (3) ◽  
pp. 793-799 ◽  
Author(s):  
L M A Ferreira ◽  
G P Hazlewood ◽  
P J Barker ◽  
H J Gilbert

A genomic library of Pseudomonas fluorescens subsp. cellulosa DNA was constructed in pUC18 and Escherichia coli recombinants expressing 4-methylumbelliferyl beta-D-cellobioside-hydrolysing activity (MUCase) were isolated. Enzyme produced by MUCase-positive clones did not hydrolyse either cellobiose or cellotriose but converted cellotetraose into cellobiose and cleaved cellopentaose and cellohexaose, producing a mixture of cellobiose and cellotriose. There was no activity against CM-cellulose, insoluble cellulose or xylan. On this basis, the enzyme is identified as an endo-acting cellodextrinase and is designated cellodextrinase C (CELC). Nucleotide sequencing of the gene (celC) which directs the synthesis of CELC revealed an open reading frame of 2153 bp, encoding a protein of Mr 80,189. The deduced primary sequence of CELC was confirmed by the Mr of purified CELC (77,000) and by the experimentally determined N-terminus of the enzyme which was identical with residues 38-47 of the translated sequence. The N-terminal region of CELC showed strong homology with endoglucanase, xylanases and an arabinofuranosidase of Ps. fluorescens subsp. cellulosa; homologous sequences included highly conserved serine-rich regions. Full-length CELC bound tightly to crystalline cellulose. Truncated forms of celC from which the DNA sequence encoding the conserved domain had been deleted, directed the synthesis of a functional cellodextrinase that did not bind to crystalline cellulose. This is consistent with the N-terminal region of CELC comprising a non-catalytic cellulose-binding domain which is distinct from the catalytic domain. The role of the cellulose-binding region is discussed.


Author(s):  
Lander de J. Alves ◽  
Fábio C. Nunes ◽  
Majeti N.V. Prasad ◽  
Pedro A.O. Mangabeira ◽  
Eduardo Gross ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document