scholarly journals A COMPARISON OF AFFINITY CONSTANTS FOR MUSCARINE-SENSITIVE ACETYLCHOLINE RECEPTORS IN GUINEA-PIG ATRIAL PACEMAKER CELLS AT 29°C AND IN ILEUM AT 29°C AND 37°C

1976 ◽  
Vol 58 (4) ◽  
pp. 613-620 ◽  
Author(s):  
R.B. BARLOW ◽  
K.J. BERRY ◽  
P.A.M. GLENTON ◽  
N.M. NIKOLAOU ◽  
K.S. SOH
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shigeki Kiuchi ◽  
Akino Usami ◽  
Tae Shimoyama ◽  
Fuminori Otsuka ◽  
Sachiko Yamaguchi ◽  
...  

Abstract Because cardiomyocyte generation is limited, the turnover of cardiomyocytes in adult heart tissues is much debated. We report here that cardiac pacemaker cells can generate cardiomyocytes from fibroblasts in vitro. Sinoatrial node cells (SANCs) were isolated from adult guinea pig hearts and were cultured at relatively low cell densities. Within a week, a number of fibroblast-like cells were observed to gather around SANCs, and these formed spontaneously beating clusters with cardiomyocyte structures. The clusters expressed genes and proteins that are characteristic of atrial cardiomyocytes. Pharmacological blocking of pacemaker currents inhibited generation of action potentials, and the spontaneous beating were ceased by physically destroying a few central cells. Inhibition of beating during culture also hampered the cluster formation. Moreover, purified guinea pig cardiac fibroblasts (GCFs) expressed cardiac-specific proteins in co-culture with SANCs or in SANC-preconditioned culture medium under electrical stimulation. These results indicate that SANCs can generate cardiomyocytes from cardiac fibroblasts through the influence of humoral factor(s) and electrophysiological activities followed by intracellular Ca2+ oscillations. This potential of SANCs to generate cardiomyocytes indicates a novel mechanism by which cardiomyocytes turns over in the vicinity of pacemaker cells and could be exploited in the development of strategies for cardiac regenerative therapy in adult hearts.


1983 ◽  
Vol 245 (1) ◽  
pp. H7-H16 ◽  
Author(s):  
S. L. Lipsius

The influence of electrotonic interactions on propagation within the SA node was studied by recording transmembrane potentials simultaneously from two neighboring (less than 1 mm apart) subsidiary pacemaker cells within the sinoatrial (SA) node of the guinea pig. As single premature stimuli were delivered progressively earlier in diastole, retrograde propagation between cells was delayed progressively. Cells activated earlier displayed secondary depolarizations that were coincident with the depolarization of neighboring cells activated later. The secondary depolarizations increased action potential duration markedly. Rapid pacing elicited secondary depolarizations that resulted in a progressive increase in action potential duration and decrease in upstroke amplitude. These changes were associated with a progressive delay in retrograde propagation that led to intermittent block with Wenckebach periodicity. Exposure to tetrodotoxin (10(-5) g/ml) delayed antegrade propagation, resulting in electrotonically mediated secondary depolarizations and exit block with Wenckebach periodicity. It is concluded that delayed activation and electrotonically mediated interactions between cells can increase action potential duration and refractoriness. These changes contribute to progressive delays in propagation that may result in intermittent block with Wenckebach periodicity within the SA node.


2000 ◽  
Vol 279 (3) ◽  
pp. G528-G535 ◽  
Author(s):  
David A. Schneider ◽  
James J. Galligan

Presynaptic nicotinic acetylcholine receptors (nAChRs) were studied in myenteric plexus preparations from guinea pig ileum using intracellular electrophysiological methods. Microapplication of nicotine (1 mM) caused a biphasic depolarization in all AH neurons ( n = 30) and in 36 of 49 S neurons. Cytisine (1 mM) caused fast depolarizations in S neurons and no response in AH neurons. Mecamylamine (10 μM) blocked all responses caused by nicotine and cytisine. TTX (0.3 μM) blocked slow excitatory synaptic potentials in S and AH neurons but had no effect on fast depolarizations caused by nicotine. Nicotine-induced slow depolarizations were reduced by TTX in two of twelve AH neurons (79% inhibition) and four of nine S neurons (90 ± 12% inhibition). Slow nicotine-induced depolarizations in the remaining neurons were TTX resistant. TTX-resistant slow depolarizations were inhibited after neurokinin receptor 3 desensitization caused by senktide (0.1 μM); senktide desensitization inhibited the slow nicotine-induced depolarization by 81 ± 5% and 63 ± 15% in AH and S neurons, respectively. A low-calcium and high-magnesium solution blocked nicotine-induced slow depolarizations in AH neurons. In conclusion, presynaptic nAChRs mediate the release of substance P and/or neurokinin A to cause slow depolarizations of myenteric neurons.


Sign in / Sign up

Export Citation Format

Share Document