neurokinin a
Recently Published Documents


TOTAL DOCUMENTS

662
(FIVE YEARS 27)

H-INDEX

57
(FIVE YEARS 2)

2022 ◽  
Vol 57 ◽  
pp. 1-14
Author(s):  
Lucia Carboni ◽  
Aram El Khoury ◽  
Daniela I. Beiderbeck ◽  
Inga D. Neumann ◽  
Aleksander A. Mathé

Author(s):  
Dominika Kwiatkowska ◽  
Adam Reich

Pruritus can be defined as an unpleasant sensation that evokes a desire to scratch and significantly impairs patients’ quality of life. Pruritus is widely observed in many dermatoses, including mastocytosis, a rare disease characterized by abnormal accumulation of mast cells, which can involve skin, bone marrow, and other organs. Increasing evidence highlights the role of mast cells in neurogenic inflammation and itching. Mast cells release various pruritogenic mediators, initiating subsequent mutual communication with specific nociceptors on sensory nerve fibres. Among important mediators released by mast cells that induce pruritus, one can distinguish histamine, serotonin, proteases, as well as various cytokines. During neuronal-induced inflammation, mast cells may respond to numerous mediators, including neuropeptides, such as substance P, neurokinin A, calcitonin gene-related peptide, endothelin 1, and nerve growth factor. Currently, treatment of pruritus in mastocytosis is focused on alleviating the effects of mediators secreted by mast cells. However, a deeper understanding of the intricacies of the neurobiology of this disease could help to provide better treatment options for patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jian-Ling Ma ◽  
Kun Ji ◽  
Li-Qing Shi ◽  
Niu-Niu Li ◽  
Li-Yun Wang ◽  
...  

BackgroundChronic cough is a common complaint which affects a large number of patients worldwide. Increased cough sensitivity is a very important cause of chronic persistent cough. However, there are limited clinical diagnosis and treatment for increased cough sensitivity. Transient receptor potential vanilloid-1 (TRPVl) is a member of the transient receptor potential (TRP) family of channels which is very closely associated with respiratory diseases. However, the mechanism through which TRPV1 that influences downstream events is still poorly understood.ResultsCapsaicin induced increase in cough sensitivity by upregulating the protein level of TRPV1, leading to the secretions of Substance P and neurokinin A which stimulated neurogenic inflammation. However, sinomenine, a component of traditional Chinese medicine, significantly attenuated the capsaicin-induced cough by inhibiting the expression of TRPV1 in guinea pigs. In addition, capsaicin increased the expression of SOX5 which mediated the transcriptional upregulation of TRPV1. However, pretreatment with sinomenine reduced the expression of SOX5.ConclusionThese results indicate that capsaicin induced increase in cough sensitivity by activating neurogenic inflammation, while sinomenine attenuated the increase in cough sensitivity by inhibiting the expressions of SOX5 and TRPV1 in guinea pigs. This finding may provide a novel target for the treatment of aggravated cough sensitivity.


2021 ◽  
Author(s):  
Julian A Harris ◽  
Bryan Faust ◽  
Arisbel B Gondin ◽  
Marc A Damgen ◽  
Carl-Mikael Suomivuori ◽  
...  

The neuropeptide Substance P (SP) is important in pain and inflammation. SP activates the neurokinin-1 receptor (NK1R) to signal via Gq and Gs proteins. Neurokinin A also activates NK1R, but leads to selective Gq signaling. How two stimuli yield distinct G-protein signaling at the same G-protein-coupled-receptor remains unclear. We determined cryo-EM structures of active NK1R bound to SP or the Gq-biased peptide SP6-11. Peptide interactions deep within NK1R are critical for receptor activation. Conversely, interactions between SP and NK1R extracellular loops are required for potent Gs signaling but not Gq signaling. Molecular dynamics simulations showed that these superficial contacts restrict SP flexibility deep in the NK1R pocket. SP6-11, which lacks these interactions, is dynamic while bound to NK1R. Structural dynamics of NK1R agonists therefore depend on interactions with the receptor extracellular loops and regulate G-protein signaling selectivity. Similar interactions between other neuropeptides and their cognate receptors may tune intracellular signaling.


Author(s):  
Gandhi F. Pavón-Romero ◽  
Nancy Haydée Serrano-Pérez ◽  
Lizbeth García-Sánchez ◽  
Fernando Ramírez-Jiménez ◽  
Luis M. Terán

Asthma is a chronic inflammation of lower airway disease, characterized by bronchial hyperresponsiveness. Type I hypersensitivity underlies all atopic diseases including allergic asthma. However, the role of neurotransmitters (NT) and neuropeptides (NP) in this disease has been less explored in comparison with inflammatory mechanisms. Indeed, the airway epithelium contains pulmonary neuroendocrine cells filled with neurotransmitters (serotonin and GABA) and neuropeptides (substance P[SP], neurokinin A [NKA], vasoactive intestinal peptide [VIP], Calcitonin-gene related peptide [CGRP], and orphanins-[N/OFQ]), which are released after allergen exposure. Likewise, the autonomic airway fibers produce acetylcholine (ACh) and the neuropeptide Y(NPY). These NT/NP differ in their effects; SP, NKA, and serotonin exert pro-inflammatory effects, whereas VIP, N/OFQ, and GABA show anti-inflammatory activity. However, CGPR and ACh have dual effects. For example, the ACh-M3 axis induces goblet cell metaplasia, extracellular matrix deposition, and bronchoconstriction; the CGRP-RAMP1 axis enhances Th2 and Th9 responses; and the SP-NK1R axis promotes the synthesis of chemokines in eosinophils, mast cells, and neutrophils. In contrast, the ACh-α7nAChR axis in ILC2 diminishes the synthesis of TNF-α, IL-1, and IL-6, attenuating lung inflammation whereas, VIP-VPAC1, N/OFQ-NOP axes cause bronchodilation and anti-inflammatory effects. Some NT/NP as 5-HT and NKA could be used as biomarkers to monitor asthma patients. In fact, the asthma treatment based on inhaled corticosteroids and anticholinergics blocks M3 and TRPV1 receptors. Moreover, the administration of experimental agents such as NK1R/NK2R antagonists and exogenous VIP decrease inflammatory mediators, suggesting that regulating the effects of NT/NP represents a potential novel approach for the treatment of asthma.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1376
Author(s):  
Maria Morini ◽  
Angelo Peli ◽  
Riccardo Rinnovati ◽  
Giuseppe Magazzù ◽  
Noemi Romagnoli ◽  
...  

Severe equine asthma (EA) syndrome is a chronic obstructive disease characterized by exaggerated contraction, inflammation, and structural alteration of the airways in adult horses, when exposed to airborne molds and particulate material. However, little is known about the relationship between the degree and type of inflammation on one hand, and the severity of the disease and the response to treatment on the other. Furthermore, to date, very few studies evaluate the diagnostic value of histology and immunohistochemical features of endoscopic biopsies on subjects with severe equine asthma. To investigate the expression of two inflammatory markers (NKA and IL-8) before, during, and after the exacerbation of severe EA, a histological and immunohistochemical study was carried out on a series of biopsy samples collected by bronchoscopy from six EA-affected horses subjected to process exacerbation through environmental stimuli and then to pharmacological treatment. The application of a histological biopsy scoring system revealed a significant difference between control cases and the EA-affected horses in all experimental phases (asymptomatic, early exacerbation phase, late exacerbation phase, and remission phase). For immunohistochemistry (IHC), only the intensity of NKA positivity increases significantly between control horses and the EA horses at late exacerbation and remission phases. In EA-affected horses, a difference was detected by comparing histology between asymptomatic and remission phase, meanwhile, NKA and IL-8 showed no differences between the experimental phases. Based on these results we can assert that: (1) The endoscopic biopsies generate reliable and homogeneous samples in the entire bronchial tree; (2) the clinical improvement associated with treatment is characterized by a significant worsening of the histological findings; and (3) the NKA immunopositivity seems to increase significantly rather than decrease, as one would have expected, after pharmacological treatment. Further studies are necessary both to implement the number of samples and to use other markers of inflammation to characterize the potential role of cytokines in the diagnosis and therapeutic approach of severe equine asthma.


Endocrinology ◽  
2021 ◽  
Author(s):  
Rajae Talbi ◽  
Ferrari Kaitlin ◽  
Ji Hae Choi ◽  
Achi Gerutshang ◽  
Elizabeth A McCarthy ◽  
...  

Abstract The alternation of the stimulatory action of the tachykinin neurokinin B (NKB) and the inhibitory action of dynorphin within arcuate (ARH) Kiss1 neurons has been proposed as the mechanism behind the generation of GnRH pulses through the pulsatile release of kisspeptin. However, we have recently documented that GnRH pulses still exist in gonadectomized mice in the absence of tachykinin signaling. Here, we document an increase in basal frequency and amplitude of LH pulses in intact male mice deficient in substance P (SP), neurokinin A (NKA) signaling (Tac1KO) and NKB signaling (Tac2KO and Tacr3KO). Moreover, we offer evidence that a single bolus of the NKB receptor agonist senktide to gonad intact WT males increases the basal release of LH without changing its frequency. Altogether, these data support the dispensable role of the individual tachykinin systems in the generation of LH pulses. Moreover, the increased activity of the GnRH pulse generator in intact KO male mice suggests the existence of compensation by additional mechanisms in the generation of kisspeptin/GnRH pulses.


2021 ◽  
Vol 11 ◽  
Author(s):  
Satoshi Ogawa ◽  
Priveena Nair Ramadasan ◽  
Rachel Anthonysamy ◽  
Ishwar S. Parhar

Substance P (SP) and neurokinin A (NKA), encoded by TAC1/Tac1 gene are members of the tachykinin family, which exert their neuromodulatory roles in vertebrate reproduction. In mammals, SP and NKA have been shown to regulate gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion via kisspeptin neurons. On the other hand, the role of SP/NKA in the regulation of reproduction in non-mammalian vertebrates is not well known. In the present study, we first localized expression of tac1 mRNA in the brain of male and female zebrafish, Danio rerio. Next, using an antibody against zebrafish tachykinin1 (Tac1), we examined the neural association of SP/NKA neural processes with GnRH3 neurons, and with kisspeptin (kiss2) neurons, in the brains of male and female zebrafish. In situ hybridization showed an apparent male-dominant tac1 expression in the ventral telencephalic area, the anterior and posterior parts of the parvocellular preoptic nucleus, and the suprachiasmatic nucleus. On the other hand, there was female-dominant tac1 expression in the ventral periventricular hypothalamus. Confocal images of double-labeled zebrafish Tac1 and GnRH3 showed associations between Tac1-immunoreactive processes and GnRH3 neurons in the ventral telencephalic area. In contrast, there was no apparent proximity of Tac1 processes to kiss2 mRNA-expressing neurons in the hypothalamus. Lastly, to elucidate possible direct action of SP/NKA on GnRH3 or Kiss2 neurons, expression of SP/NKA receptor, tacr1a mRNA was examined in regions containing GnRH3 or Kiss2 neurons by in situ hybridization. Expression of tacr1a mRNA was seen in several brain regions including the olfactory bulb, preoptic area and hypothalamus, where GnRH3 and Kiss2 cells are present. These results suggest that unlike in mammals, Tac1 may be involved in male reproductive functions via direct action on GnRH3 neurons but independent of kisspeptin in the zebrafish.


Author(s):  
Azza B. Hammad ◽  
Rasha E. Elsharkawy ◽  
Ghada S. Abdel Azim

Abstract Background Clinical applications of transcranial magnetic stimulation (TMS) have shown promising results in the treatment of headache disorders, with migraine being one of the most encountered. Objective To assess the role of low-frequency repetitive transcranial magnetic stimulation as a preventive treatment of migraine (with and without aura) and correlate the results with the serum level of the inflammatory biomarker (neurokinin A). Methods Forty patients, with age ranging from 15 to 55 years, diagnosed with migraine (30 migraine without aura and 10 with aura) and 20 apparently healthy individuals, who were age and sex matched with the patient group, were included in this study. A low-frequency (1 Hz) rTMS protocol was applied for all patients for five consecutive days interictally. Assessment of pain intensity using visual analogue scale and frequency and duration of attacks as well as number of pills taken by patients as an abortive treatment according to the Basic Diagnostic Headache Diary for 4 weeks before and 4 weeks after TMS sessions was done. In addition, the Migraine Disability Assessment scale (MIDAS) was applied to assess the severity and degree of disability caused by migraine. Measurement of neurokinin A serum level was done by using ELISA for all patients before and after TMS and for control group once. Results There was a significant reduction in pain intensity, frequency and duration of migraine attacks, migraine disability scores, and number of pills taken as abortive treatment for attacks after rTMS (P < 0.001). Also, serum level of neurokinin A in the patients was significantly reduced after rTMS (P < 0.001). Conclusion Low-frequency rTMS is an effective prophylactic treatment for migraine with and without aura.


Sign in / Sign up

Export Citation Format

Share Document