Smooth Muscle: Excitation-Contraction Coupling, Contractile Regulation, and the Cross-Bridge Cycle

1994 ◽  
Vol 18 (1) ◽  
pp. 138-143 ◽  
Author(s):  
Andrew P. Somlyo ◽  
Avril V. Somlyo
2001 ◽  
Vol 91 (5) ◽  
pp. 2266-2274 ◽  
Author(s):  
Gary C. Sieck ◽  
Young-Soo Han ◽  
Christina M. Pabelick ◽  
Y. S. Prakash

In airway smooth muscle (ASM), ACh induces propagating intracellular Ca2+ concentration ([Ca2+]i) oscillations (5–30 Hz). We hypothesized that, in ASM, coupling of elevations and reductions in [Ca2+]i to force generation and relaxation (excitation-contraction coupling) is slower than ACh-induced [Ca2+]i oscillations, leading to stable force generation. When we used real-time confocal imaging, the delay between elevated [Ca2+]i and contraction in intact porcine ASM cells was found to be ∼450 ms. In β-escin-permeabilized ASM strips, photolytic release of caged Ca2+ resulted in force generation after ∼800 ms. When calmodulin (CaM) was added, this delay was shortened to ∼500 ms. In the presence of exogenous CaM and 100 μM Ca2+, photolytic release of caged ATP led to force generation after ∼80 ms. These results indicated significant delays due to CaM mobilization and Ca2+-CaM activation of myosin light chain kinase but much shorter delays introduced by myosin light chain kinase-induced phosphorylation of the regulatory myosin light chain MLC20 and cross-bridge recruitment. This was confirmed by prior thiophosphorylation of MLC20, in which force generation occurred ∼50 ms after photolytic release of caged ATP, approximating the delay introduced by cross-bridge recruitment alone. The time required to reach maximum steady-state force was >15 s. Rapid chelation of [Ca2+]i after photolytic release of caged diazo-2 resulted in relaxation after a delay of ∼1.2 s and 50% reduction in force after ∼57 s. We conclude that in ASM cells agonist-induced [Ca2+]i oscillations are temporally and spatially integrated during excitation-contraction coupling, resulting in stable force production.


1992 ◽  
Vol 263 (6) ◽  
pp. C1160-C1171 ◽  
Author(s):  
H. Ozaki ◽  
L. Zhang ◽  
I. L. Buxton ◽  
K. M. Sanders ◽  
N. G. Publicover

The role of phosphatidylinositol (PI) turnover in excitation-contraction coupling was investigated in canine antral smooth muscle. Acetylcholine (ACh; 0.1-1 microM) transiently increased tissue levels of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and increased the amplitudes of the plateau phase of slow waves and associated Ca2+ transients and phasic contractions. ACh also increased basal concentrations of cytosolic Ca2+ ([Ca2+]c), but these changes were not associated with an increase in resting tension. ATP (0.3 mM) had similar effects on Ins(1,4,5)P3 levels, basal [Ca2+]c, and resting tension. However, in contrast to the effects of ACh, ATP transiently reduced the amplitude of the plateau phase of slow waves and reduced the amplitudes of associated Ca2+ transients and phasic contractions. We investigated the possibility that two products of PI turnover, diacylglycerol (DAG) and Ins(1,4,5)P3, might provide negative feedback to regulate Ca2+ entry during slow waves. 1) DAG is known to activate protein kinase C (PKC). Activation of PKC by phorbol 12,13-dibutyrate (PDBu, 0.5 microM) reduced the amplitude of the plateau phase of slow waves and corresponding Ca2+ transients and phasic contractions. Assay of PKC showed that ACh, ATP, and PDBu stimulated enzyme activity. 2) Ins(1,4,5)P3 is known to increase [Ca2+]c by release of Ca2+ from internal stores. Basal [Ca2+]c was also increased by elevated external K+, ionomycin, thapsigargin, or caffeine. Each of these compounds reduced the amplitude and duration of slow waves. Results suggest that products of PI turnover may provide negative-feedback control of Ca2+ influx during slow waves, tending to reduce the amplitude of phasic contractile activity in gastric muscles. Differences in responses to ACh and ATP can be explained by a G protein-dependent mechanism in which ACh suppresses the voltage dependence of Ca(2+)-activated K+ channels.


Cell Calcium ◽  
1984 ◽  
Vol 5 (3) ◽  
pp. 274
Author(s):  
R. Casteels ◽  
G. Droogmans ◽  
F. Wuytack

Sign in / Sign up

Export Citation Format

Share Document