negative feedback regulation
Recently Published Documents


TOTAL DOCUMENTS

416
(FIVE YEARS 79)

H-INDEX

65
(FIVE YEARS 4)

2022 ◽  
Vol 12 ◽  
Author(s):  
Kunal R. Shah ◽  
Xin Guan ◽  
Jiusheng Yan

Biochemical and functional studies of ion channels have shown that many of these integral membrane proteins form macromolecular signaling complexes by physically associating with many other proteins. These macromolecular signaling complexes ensure specificity and proper rates of signal transduction. The large-conductance, Ca2+-activated K+ (BK) channel is dually activated by membrane depolarization and increases in intracellular free Ca2+ ([Ca2+]i). The activation of BK channels results in a large K+ efflux and, consequently, rapid membrane repolarization and closing of the voltage-dependent Ca2+-permeable channels to limit further increases in [Ca2+]i. Therefore, BK channel-mediated K+ signaling is a negative feedback regulator of both membrane potential and [Ca2+]i and plays important roles in many physiological processes and diseases. However, the BK channel formed by the pore-forming and voltage- and Ca2+-sensing α subunit alone requires high [Ca2+]i levels for channel activation under physiological voltage conditions. Thus, most native BK channels are believed to co-localize with Ca2+-permeable channels within nanodomains (a few tens of nanometers in distance) to detect high levels of [Ca2+]i around the open pores of Ca2+-permeable channels. Over the last two decades, advancement in research on the BK channel’s coupling with Ca2+-permeable channels including recent reports involving NMDA receptors demonstrate exemplary models of nanodomain structural and functional coupling among ion channels for efficient signal transduction and negative feedback regulation. We hereby review our current understanding regarding the structural and functional coupling of BK channels with different Ca2+-permeable channels.


2022 ◽  
Vol 12 ◽  
Author(s):  
Monika Avbelj ◽  
Iva Hafner-Bratkovič ◽  
Duško Lainšček ◽  
Mateja Manček-Keber ◽  
Tina Tinkara Peternelj ◽  
...  

Coordination among multiple signaling pathways ensures an appropriate immune response, where a signaling pathway may impair or augment another signaling pathway. Here, we report a negative feedback regulation of signaling through the key innate immune mediator MyD88 by inflammasome-activated caspase-1. NLRP3 inflammasome activation impaired agonist- or infection-induced TLR signaling and cytokine production through the proteolytic cleavage of MyD88 by caspase-1. Site-specific mutagenesis was used to identify caspase-1 cleavage site within MyD88 intermediary segment. Different cleavage site location within MyD88 defined the functional consequences of MyD88 cleavage between mouse and human cells. LPS/monosodium urate–induced mouse inflammation model corroborated the physiological role of this mechanism of regulation, that could be reversed by chemical inhibition of NLRP3. While Toll/interleukin-1 receptor (TIR) domain released by MyD88 cleavage additionally contributed to the inhibition of signaling, Waldenström’s macroglobulinemia associated MyD88L265P mutation is able to evade the caspase-1-mediated inhibition of MyD88 signaling through the ability of its TIRL265P domain to recruit full length MyD88 and facilitate signaling. The characterization of this mechanism reveals an additional layer of innate immunity regulation.


2022 ◽  
Author(s):  
Ying Liu ◽  
Yan Chen ◽  
Xiao-Hua Li ◽  
Tian-Peng Li ◽  
Chong Cao ◽  
...  

Abstract BackgroundOsteoblasts are derived from bone marrow mesenchymal stem cells (BMMSCs) and play important role in bone remodeling. While our previous studies have investigated the cell subtypes and heterogeneity in osteoblasts and BMMSCs separately, cell-to-cell communications between osteoblasts and BMMSCs in vivo in humans have not been characterized.ResultsIn this study, we performed a systematic integration analysis with our single-cell RNA sequencing (scRNA-seq) transcriptomes data from BMMSCs and osteoblasts. We successfully identified a novel preosteoblasts subtype which highly expressed ATF3, CCL2, CXCL2 and IRF1. Biological functional annotations of the transcriptomes suggested that the novel preosteoblasts subtype may inhibit osteoblasts differentiation, maintain cells to a less differentiated status and recruit osteoclasts. Ligand-receptor interaction analysis showed strong interaction between mature osteoblasts and BMMSCs. Meanwhile, we found FZD1 was highly expressed in BMMSCs of osteogenic differentiation direction. WIF1 and SFRP4, which were highly expressed in mature osteoblasts were reported to inhibit osteogenic differentiation. We speculated that WIF1 and sFRP4 expressed in mature osteoblasts inhibited the binding of FZD1 to Wnt ligand in BMMSCs, thereby further inhibiting osteogenic differentiation of BMMSCs.ConclusionsAt the single cell level, this study provided insights into the cell-to-cell communications between BMMSCs and osteoblasts and mature osteoblasts may mediate negative feedback regulation of osteogenesis process.


2021 ◽  
Author(s):  
Aivar Sootla ◽  
Nicolas Delalez ◽  
Emmanouil Alexis ◽  
Arthur Norman ◽  
Harrison Steel ◽  
...  

We introduce a new design framework for implementing negative feedback regulation in Synthetic Biology, which we term "dichotomous feedback". Our approach is different from current methods, in that it sequesters existing fluxes in the process to be controlled, and in this way takes advantage of the process's architecture to design the control law. This signal sequestration mechanism appears in many natural biological systems and can potentially be easier to realise than 'molecular sequestration' and other comparison motifs that are nowadays common in biomolecular feedback control design. The loop is closed by linking the strength of signal sequestration to the process output. Our feedback regulation mechanism is motivated by two-component signalling systems, where we introduce a second response regulator competing with the natural response regulator thus sequestering kinase activity. Here, dichotomous feedback is established by increasing the concentration of the second response regulator as the level of the output of the natural process increases. Extensive analysis demonstrates how this type of feedback shapes the signal response, attenuates intrinsic noise while increasing robustness and reducing crosstalk.


2021 ◽  
Vol 12 ◽  
Author(s):  
Huiying Xu ◽  
Peirui Chen ◽  
Yi Tao

Based on how plants respond to shade, we typically classify them into two groups: shade avoiding and shade tolerance plants. Under vegetative shade, the shade avoiding species induce a series of shade avoidance responses (SARs) to outgrow their competitors, while the shade tolerance species induce shade tolerance responses (STRs) to increase their survival rates under dense canopy. The molecular mechanism underlying the SARs has been extensively studied using the shade avoiding model plant Arabidopsis thaliana, while little is known about STRs. In Aarabidopsis, there is a PHYA-mediated negative feedback regulation that suppresses exaggerated SARs. Recent studies revealed that in shade tolerance Cardamine hirsuta plants, a hyperactive PHYA was responsible for suppressing shade-induced elongation growth. We propose that similar signaling components may be used by shade avoiding and shade tolerance plants, and different phenotypic outputs may result from differential regulation or altered dynamic properties of these signaling components. In this review, we summarized the role of PHYA and its downstream components in shade responses, which may provide insights into understanding how both types of plants respond to shade.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3457
Author(s):  
Tsung-Yuan Hsu ◽  
Ling-Nung Hsu ◽  
Shih-Yu Chen ◽  
Bi-Tzen Juang

Werner syndrome (WS) is a rare recessive genetic disease characterized by premature aging. Individuals with this disorder develop normally during childhood, but their physiological conditions exacerbate the aging process in late adolescence. WS is caused by mutation of the human WS gene (WRN), which encodes two main domains, a 3′-5′ exonuclease and a 3′-5′ helicase. Caenorhabditis elegans expresses human WRN orthologs as two different proteins: MUT-7, which has a 3′-5′ exonuclease domain, and C. elegans WRN-1 (CeWRN-1), which has only helicase domains. These unique proteins dynamically regulate olfactory memory in C. elegans, providing insight into the molecular roles of WRN domains in humans. In this review, we specifically focus on characterizing the function of MUT-7 in small interfering RNA (siRNA) synthesis in the cytoplasm and the roles of siRNA in directing nuclear CeWRN-1 loading onto a heterochromatin complex to induce negative feedback regulation. Further studies on the different contributions of the 3′-5′ exonuclease and helicase domains in the molecular mechanism will provide clues to the accelerated aging processes in WS.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3283
Author(s):  
Yusaku Yariuchi ◽  
Takashi Okamoto ◽  
Yoshiteru Noutoshi ◽  
Taku Takahashi

In plants, many of the enzymes in polyamine metabolism are encoded by multiple genes, whose expressions are differentially regulated under different physiological conditions. For comprehensive understanding of their regulation during the seedling growth stage, we examined the expression of polyamine metabolic genes in response to polyamines and stress-related plant hormones in Arabidopsis thaliana. While confirming previous findings such as induction of many of the genes by abscisic acid, induction of arginase genes and a copper amine oxidase gene, CuAOα3, by methyl jasmonate, that of an arginine decarboxylase gene, ADC2, and a spermine synthase gene, SPMS, by salicylic acid, and negative feedback regulation of thermospermine biosynthetic genes by thermospermine, our results showed that expressions of most of the genes are not responsive to exogenous polyamines. We thus examined expression of OsPAO6, which encodes an apoplastic polyamine oxidase and is strongly induced by polyamines in rice, by using the promoter-GUS fusion in transgenic Arabidopsis seedlings. The GUS activity was increased by treatment with methyl jasmonate but neither by polyamines nor by other plant hormones, suggesting a difference in the response to polyamines between Arabidopsis and rice. Our results provide a framework to study regulatory modules directing expression of each polyamine metabolic gene.


2021 ◽  
pp. 107385842110468
Author(s):  
Yuying Huang ◽  
Shao-Rui Chen ◽  
Hui-Lin Pan

Calcineurin, the predominant Ca2+/calmodulin-dependent serine/threonine protein phosphatase (also known as protein phosphatase 2B), is highly expressed in immune T cells and the nervous system, including the dorsal root ganglion and spinal cord. It controls synaptic transmission and plasticity by maintaining the appropriate phosphorylation status of many ion channels present at presynaptic and postsynaptic sites. As such, normal calcineurin activity in neurons and synapses is mainly involved in negative feedback regulation in response to increased neuronal activity and intracellular Ca2+ levels. Calcineurin inhibitors (e.g., cyclosporine and tacrolimus) are widely used as immunosuppressants in tissue and organ transplantation recipients and for treating autoimmune diseases but can cause severe pain in some patients. Furthermore, diminished calcineurin activity at the spinal cord level may play a major role in the transition from acute to chronic neuropathic pain after nerve injury. Restoring calcineurin activity at the spinal cord level produces long-lasting pain relief in animal models of neuropathic pain. In this article, we provide an overview of recent studies on the critical roles of calcineurin in regulating glutamate NMDA and AMPA receptors, voltage-gated Ca2+ channels, potassium channels, and transient receptor potential channels expressed in the spinal dorsal horn and primary sensory neurons.


2021 ◽  
Author(s):  
Helen A Brown ◽  
Charles AC Williams ◽  
Houjiang Zhou ◽  
Diana Rios-Szwed ◽  
Rosalia Fernandez-Alonso ◽  
...  

The ERK5 MAP kinase signalling pathway drives transcription of naïve pluripotency genes in mouse Embryonic Stem Cells (mESCs). However, how ERK5 impacts on other aspects of mESC biology has not been investigated. Here, we employ quantitative proteomic profiling to identify proteins whose expression is regulated by the ERK5 pathway in mESCs. This reveals a function for ERK5 signalling in regulating dynamically expressed early embryonic 2-cell stage (2C) genes including the mESC rejuvenation factor ZSCAN4. ERK5 signalling and ZSCAN4 induction in mESCs increases telomere length, a key rejuvenative process required for prolonged culture. Mechanistically, ERK5 promotes ZSCAN4 and 2C gene expression via transcription of the KLF2 pluripotency transcription factor. Surprisingly, ERK5 also directly phosphorylates KLF2 to drive ubiquitin-dependent degradation, encoding negative-feedback regulation of 2C gene expression. In summary, our data identify a regulatory module whereby ERK5 kinase and transcriptional activities bi-directionally control KLF2 levels to pattern 2C gene transcription and a key mESC rejuvenation process.


2021 ◽  
Author(s):  
Yusuke T. Maeda

Abstract Gene expression via transcription-translation is the most fundamental reaction to sustain biological systems, and complex reactions such as this one occur in a small compartment of living cells. Transcriptional feedback that controls gene expression during mRNA synthesis is a vital mechanism that regulates protein synthesis in cells. There is increasing evidence that the cellular compartment induces steric effects in gene expression reactions. However, the finite-size effect of spatial constraints on feedback regulation is not well understood. Here, we study the confinement effect on transcriptional negative feedback regulation of gene expression reactions using a theoretical model. We find that negative feedback regulation alters the scaling relation of gene expression level on compartment volume, approaching the regular scaling relation without the steric effect. Our findings suggest that negative autoregulatory feedback at the transcription step can dampen the size-dependence of protein expression levels in heterogeneous cell populations.


Sign in / Sign up

Export Citation Format

Share Document