Mechanisms of resistance to the brown planthopper Nilaparvata lugens in wild rice (Oryza spp.) cultivars

1995 ◽  
Vol 74 (3) ◽  
pp. 245-251 ◽  
Author(s):  
R. Velusamy ◽  
M. Ganesh Kumar ◽  
Y. S. Johnson Edward
2020 ◽  
Author(s):  
Yongbo Liu ◽  
Weiqing Wang ◽  
Yonghua Li ◽  
Fang Liu ◽  
Weijuan Han ◽  
...  

Abstract Background: Strategies are still employed to decrease insect damage in crop production, including conventional breeding with wild germplasm resources and transgenic technology with the insertion of foreign genes, while the insect-resistant mechanism of these strategies remains unclear. Results: Under the feeding of brown planthopper (Nilaparvata lugens), cultivated rice (WT) showed less DEGs (568) and DAPs (4) than transgenic rice (2098 and 11) and wild rice CL (1990 and 39) and DX (1932 and 25). Hierarchical cluster of DEGs showed gene expression of CL and DX were similar, slightly distinct to GT, and clearly different from WT. DEGs assigned to the GO terms were less in WT rice than GT, CL and DX, and “Metabolic process”, “cellular process”, “response to stimulus” were dominant. Wild rice CL significantly enriched in KEGG pathways of “Metabolic pathways”, “biosynthesis of secondary metabolites”, “plant-pathogen interaction” and “plant hormone signal transduction”. The iTRAQ analysis confirmed the results of RNA-seq, which showing the least GO terms and KEGG pathways responding to herbivory in the cultivated rice. Synthesize conclusions: This study demonstrated that similarity in the transcriptomic and proteomic response to herbivory for the wild rice and Bt-transgenic rice, while cultivated rice lack of enough pathways in response to herbivory. Our results highlighted the importance of conservation of crop wild species.


Rice Science ◽  
2016 ◽  
Vol 23 (4) ◽  
pp. 219-224 ◽  
Author(s):  
Preetinder S. Sarao ◽  
Gurpreet K. Sahi ◽  
Kumari Neelam ◽  
Gurjit S. Mangat ◽  
Bhaskar C. Patra ◽  
...  

2021 ◽  
Author(s):  
Xuan Wang ◽  
Yue Han ◽  
Yuexiong Zhang ◽  
Biao Deng ◽  
Biqiu Wu ◽  
...  

Abstract The brown planthopper (Nilaparvata lugens Stål, BPH) is one of the most destructive rice pests worldwide. GXU202 is a germplasm of common wild rice (Oryza rufipogon Griff. ) with high resistance to the BPH. In this study, the genetic analysis indicated that the BPH resistant phenotype of GXU202 is controlled by a major gene. Through the combination and comparison of QTL linkage and BSA-seq analyses, a novel gene locus BPH41 conferring BPH resistance was identified, which has been finely mapped to a 114-kb region delimited by D01031 and W1 on chromosome 4. The markers D01031 and D01045 showed high accuracy in predicting resistant phenotypes to BPH, suggesting their reliability for marker-assisted selection of BPH41 in breeding for BPH resistant rice varieties. The present identification of BPH41 will establish a foundation for further map-based cloning and functional characterization of the gene.


2012 ◽  
Vol 40 (4) ◽  
pp. 502-508 ◽  
Author(s):  
M. P. Ali ◽  
Salem S. Alghamdi ◽  
M. A. Begum ◽  
A. B. M. Anwar Uddin ◽  
M. Z. Alam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document