itraq analysis
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 33)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 110-110
Author(s):  
Mao Ye ◽  
Zhiwen Song ◽  
Chenglong Jin ◽  
Chunqi Gao ◽  
Huichao Yan ◽  
...  

Abstract The type of myofiber is important for porcine meat quality. Meanwhile, the nt/Ca2+ pathway has been showed multiple roles in skeletal muscle formation; however, the distinct mechanism is still unclear. In this study, the weaned piglets and satellite cells were designed into the control group, lysine deficiency group and lysine rescue group to investigate the function of Wnt/Ca2+ pathway in governing skeletal muscle typing. After we confirm the growth of weaned piglets was controlled by lysine, the isobaric tag for relative and absolute quantification (iTRAQ) analysis of skeletal muscle detected that Wnt/Ca2+ pathway was involved in the transition of fast and slow fiber. Then, we found the ratio of type I myofiber in Semimembranous (fast muscle) was significantly increased after lysine deficiency (P < 0.05), and decreased by lysine rescue (P < 0.05). In contrast, the ratio of type I myofiber in Semitendinous muscle (slow muscle) was significantly decreased in the lysine deficiency group, and increased in the lysine rescue group (P < 0.05). Furthermore, the Wnt/Ca2+ pathway was significantly increased in Semimembranous muscle, while decreased in Semitendinous muscle with lysine deficiency, and this phenomenon was inversed after lysine rescue (P < 0.05). Meanwhile, the Wnt/Ca2+ pathway was stronger in satellite cells isolated from Semitendinous muscle (StSCs) than that of Semimembranous satellite cell (SmSCs) (P < 0.05). And we also found the StSCs enter in differentiation is more easily than SmSCs (P < 0.05). Besides, the ratio of type I myofiber originated from StSCs showed greater than StSCs (P < 0.05). In summary, we conclude that satellite cells participate in the Wnt/Ca2+ pathway controlled porcine myofiber determination.


2021 ◽  
Author(s):  
Kazuya Kusama ◽  
Rulan Bai ◽  
Yuta Matsuno ◽  
Atsushi Ideta ◽  
Toshihiro Sakurai ◽  
...  

Abstract Pregnancy loss predominantly occurs during periods between blastocyst hatching and conceptus (embryo plus extraembryonic membranes) implantation to the endometrium in cattle. Insufficient biochemical communication between conceptus and endometrium has been suspected as the primary cause for early embryonic losses. If molecules regulating this communication were identified, molecular mechanisms associated with early pregnancy success or loss could be better understood. To identify novel factors as detection markers of non-pregnant or females undergoing embryonic loss, blood sera from embryo-transferred heifers on day 7 (day 0 = day of estrus) were collected on day 17, 20, or 22, which were subjected to metabolome and global proteome iTRAQ analyses. On each sample, the metabolome analysis partly divided serum components into pregnant or not. In the iTRAQ analysis, heatmap analysis with 25 unique proteins separated into pregnant or not on day 20 or 22. Furthermore, receiver operating characteristic curve (ROC) analysis identified five candidate proteins detecting non-pregnant heifers, of which SNX5 in day 22 sera had the highest area under the curve (AUC), 0.983. We also detected SNX5 in day 22 sera from non-pregnant heifers using western blotting. These results suggest that high SNX5 in day 22 sera could predict early pregnancy loss in heifers.


2021 ◽  
Author(s):  
Debasis Sahu ◽  
Subasa Bishwal ◽  
Md. Zubbair Malik ◽  
Sukanya Sahu ◽  
Sandeep Kaushik ◽  
...  

Abstract Troxerutin (TXR) is a phytochemical reported to possess anti-inflammatory and hepatoprotective effects. In this study, we aimed to exploit anti-arthritic properties of TXR using an adjuvant induced arthritic (AIA) rat model. AIA induced rats showed highest arthritis score at disease onset and by oral administration of TXR (50, 100, 200 mg/kg body weight), reduced to basal level in a dose dependent manner. Isobaric tag for relative and absolute quantitative (iTRAQ) proteomics tool was employed to identify deregulated joint homogenate proteins in AIA and TXR treated rats to decipher probable mechanism of the TXR action in arthritis. iTRAQ analysis identified a set of 434 joint homogenate proteins with 65 deregulated proteins (log2 case/control ≥ 1.5) in AIA. Expressions of a set of important proteins (AAT, T-kininogen, vimentin, desmin, and nucleophosmin) that could classify AIA from healthy were validated using Western blot analysis. Western blot data corroborated proteomics findings. In silico protein-protein interaction study of joint homogenate proteome revealed that complement component 9 (C9), the major building blocks of the membrane attack complex (MAC) responsible for sterile inflammation, gets perturbed in AIA. Our dosimetry study suggests that a TXR dose of 200 mg/kg body weight for 15 days is sufficient to bring the arthritis score to basal levels in AIA rats. We have shown the importance of TXR as an anti-arthritis agent in AIA model and after additional investigation its arthritis ameliorating properties could be exploited for clinical usability.


Reproduction ◽  
2021 ◽  
Author(s):  
Yuta Matsuno ◽  
Yahia A Amin ◽  
Kazuya Kusama ◽  
Kazuhiko Imakawa

In ruminants, various molecules are involved in regulating conceptus attachment and adhesion; however, molecules that maintain the conceptus adhesion have not been well characterized. We hypothesized that conceptus must produce a molecule(s), yet uncharacterized or overlooked, which maintain conceptus adhesion to the uterine epithelium. In this study, we aimed to identify new candidate(s) in conceptus secretory proteins responsible for maintaining conceptus adhesion in sheep. We performed RNA-sequence analysis with ovine conceptuses, followed by endometria obtained from pregnant animals on day 15 (P15: pre-attachment), 17 (P17: right after attachment), and 21 (P21: post-attachment; adhesion) and iTRAQ analysis of uterine flushing on P15 and P17. To identify the proteins secreted from conceptuses, we cross-referenced the transcriptome and proteome data. These analyses identified 16 and 26 proteins as conceptus secretory proteins on P15 and P17, respectively. Gene ontology analysis revealed that the conceptus secretory proteins were enriched in those categorized to fibrinolysis and coagulation. RT-qPCR analysis verified that the expression levels of transcripts in conceptuses encoding coagulation factors, fibrinogen subunits, and fibrinolysis factors were significantly higher on P21 than on P15 or P17, which were supported by those through in situ hybridization, western blotting and immunohistochemistry. Histology analysis confirmed that fibrin protein was present at the conceptus adhesion region on P21. These results suggest that in addition to the numerous adhesion molecules so far characterized, fibrin is a new candidate molecule for maintaining conceptus adhesion for pregnancy continuation in ruminants.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hao-Teng Zheng ◽  
Zi-Xuan Zhuang ◽  
Chao-Jung Chen ◽  
Hsin-Yi Liao ◽  
Hung-Lin Chen ◽  
...  

AbstractThe adrenal gland responds to heat stress by epinephrine and glucocorticoid release to alleviate the adverse effects. This study investigated the effect of acute heat stress on the protein profile and histone modification in the adrenal gland of layer-type country chickens. A total of 192 roosters were subject to acute heat stress and thereafter classified into a resistant or susceptible group according to body temperature change. The iTRAQ analysis identified 80 differentially expressed proteins, in which the resistant group had a higher level of somatostatin and hydroxy-δ-5-steroid dehydrogenase but a lower parathymosin expression in accordance with the change of serum glucocorticoid levels. Histone modification analysis identified 115 histone markers. The susceptible group had a higher level of tri-methylation of histone H3 lysine 27 (H3K27me3) and showed a positive crosstalk with K36me and K37me in the H3 tails. The differential changes of body temperature projected in physiological regulation at the hypothalamus–pituitary–adrenal axis suggest the genetic heterogeneity in basic metabolic rate and efficiency for heat dissipation to acclimate to thermal stress and maintain body temperature homeostasis. The alteration of adrenal H3K27me3 level was associated with the endocrine function of adrenal gland and may contribute to the thermotolerance of chickens.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 481
Author(s):  
Arkaitz Mucientes ◽  
Eva Herranz ◽  
Enrique Moro ◽  
Aranzazu González-Corchón ◽  
María Jesús Peña-Soria ◽  
...  

Current gold-standard strategies for bone regeneration do not achieve the optimal recovery of bone biomechanical properties. To bypass these limitations, tissue engineering techniques based on hybrid materials made up of osteoprogenitor cells—such as mesenchymal stem cells (MSCs)—and bioactive ceramic scaffolds—such as calcium phosphate-based (CaPs) bioceramics—seem promising. The biological properties of MSCs are influenced by the tissue source. This study aims to define the optimal MSC source and construct (i.e., the MSC–CaP combination) for clinical application in bone regeneration. A previous iTRAQ analysis generated the hypothesis that anatomical proximity to bone has a direct effect on MSC phenotype. MSCs were isolated from adipose tissue, bone marrow, and dental pulp, then cultured both on a plastic surface and on CaPs (hydroxyapatite and β-tricalcium phosphate), to compare their biological features. On plastic, MSCs isolated from dental pulp (DPSCs) presented the highest proliferation capacity and the greatest osteogenic potential. On both CaPs, DPSCs demonstrated the greatest capacity to colonise the bioceramics. Furthermore, the results demonstrated a trend that DPSCs had the most robust increase in ALP activity. Regarding CaPs, β-tricalcium phosphate obtained the best viability results, while hydroxyapatite had the highest ALP activity values. Therefore, we propose DPSCs as suitable MSCs for cell-based bone regeneration strategies.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Xing Wang ◽  
Yi Zhang ◽  
Yufeng Zhang ◽  
Mingming Kang ◽  
Yuanbo Li ◽  
...  

AbstractEarthworms (Annelida: Crassiclitellata) are widely distributed around the world due to their ancient origination as well as adaptation and invasion after introduction into new habitats over the past few centuries. Herein, we report a 1.2 Gb complete genome assembly of the earthworm Amynthas corticis based on a strategy combining third-generation long-read sequencing and Hi-C mapping. A total of 29,256 protein-coding genes are annotated in this genome. Analysis of resequencing data indicates that this earthworm is a triploid species. Furthermore, gene family evolution analysis shows that comprehensive expansion of gene families in the Amynthas corticis genome has produced more defensive functions compared with other species in Annelida. Quantitative proteomic iTRAQ analysis shows that expression of 147 proteins changed in the body of Amynthas corticis and 16 S rDNA sequencing shows that abundance of 28 microorganisms changed in the gut of Amynthas corticis when the earthworm was incubated with pathogenic Escherichia coli O157:H7. Our genome assembly provides abundant and valuable resources for the earthworm research community, serving as a first step toward uncovering the mysteries of this species, and may provide molecular level indicators of its powerful defensive functions, adaptation to complex environments and invasion ability.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 198
Author(s):  
Bo Wang ◽  
Chen-chen Xu ◽  
Ce Liu ◽  
Yang-hua Qu ◽  
Hao Zhang ◽  
...  

This study was designed to investigate the impact of dietary lycopene (antioxidant extracted from tomato) supplementation on postmortem antioxidant capacity, drip loss and protein expression profiles of lamb meat during storage. Thirty male Hu lambs were randomly divided into three treatment groups and housed in individual pens and received 0, 200 or 400 mg·kg−1 lycopene in their diet, respectively. All lambs were slaughtered after 3 months of fattening, and the longissimus thoracis (LT) muscle was collected for analyses. The results indicated that drip loss of LT muscle increased with storage days (P < 0.05). After storage for 7 days, significantly lower drip loss of meat was found in fed the lycopene-supplemented diet (P < 0.05). Dietary lycopene supplementation increased the activity of antioxidant enzymes (total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT)) (P < 0.05) and decreased the thiobarbituric acid reactive substance (TBARS) and carbonyl contents (P < 0.05). During the storage period (days 0, 5 and 7), a number of differentially abundant proteins (DAPs), including oxidases, metabolic enzymes, calcium channels and structural proteins, were identified based on iTRAQ data, with roles predominantly in carbon metabolism, oxidative phosphorylation, cardiac muscle contraction and proteasome pathways, and which contribute to decreased drip loss of lamb meat during storage. It can be concluded that dietary lycopene supplementation increased antioxidant capacity after slaughter, and the decreased drip loss during postmortem storage might occur by changing the expression of proteins related to enzyme activity and cellular structure in lamb muscle.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Xiaoya Zhao ◽  
Juan Li ◽  
Qian Zhu ◽  
Guiling Liang ◽  
Wei Xia ◽  
...  

Abstract Background Ovarian teratoma-associated anti-N-methyl-D-aspartate receptor encephalitis (NMDAR-E) is a severe autoimmune neurological disorder, and the influence of teratoma-induced autoantibodies on the pathogenesis remains unclear. Methods Ovarian teratoma tissues were collected from teratoma patients with and without NMDAR-E. Proteins were extracted and then analyzed using iTRAQ-coupled LC–MS/MS, which was followed by bioinformatics analysis. Candidate proteins were verified by Western blotting and immunohistochemistry. Results In total, 36 differentially expressed proteins (DEPs) were identified between the control group and NMDAR-E group, and the bioinformatics analysis revealed that the DEPs were mainly involved in immune-related pathways, especially HLA-A and HLA-DRB1. The western blotting results for HLA-A and HLA-DRB1 were consistent with the results of the iTRAQ analysis. Additionally, the immunohistochemical data revealed that the aggregation of HLA-A (+) and HLA-DRB1 (+) cells was more apparent in the teratoma tissues of NMDAR-E patients compared with that in the tissues of controls. Conclusion Our investigation indicated that HLA-A and HLA-DRB1 might be involved in mediating ovarian teratoma-associated NMDAR-E. These findings provide new insights into the pathophysiological mechanisms and provide information for the functional exploration of proteins in the future.


Sign in / Sign up

Export Citation Format

Share Document