scholarly journals Quantifying training intensity distribution in elite endurance athletes: is there evidence for an "optimal" distribution?

Author(s):  
K. Stephen Seiler ◽  
Glenn Ovrevik Kjerland
2007 ◽  
Vol 21 (3) ◽  
pp. 943-949 ◽  
Author(s):  
JONATHAN ESTEVE-LANAO ◽  
CARL FOSTER ◽  
STEPHEN SEILER ◽  
ALEJANDRO LUCIA

2019 ◽  
Vol 14 (8) ◽  
pp. 1151-1156
Author(s):  
Jan G. Bourgois ◽  
Gil Bourgois ◽  
Jan Boone

Training-intensity distribution (TID), or the intensity of training and its distribution over time, has been considered an important determinant of the outcome of a training program in elite endurance athletes. The polarized and pyramidal TID, both characterized by a high amount of low-intensity training (below the first lactate or ventilatory threshold), but with different contributions of threshold training (between the first and second lactate or ventilatory threshold) and high-intensity training (above the second lactate or ventilatory threshold), have been reported most frequently in elite endurance athletes. However, the choice between these 2 TIDs is not straightforward. This article describes the historical, evolutionary, and physiological perspectives of the success of the polarized and pyramidal TID and proposes determinants that should be taken into account when choosing the most appropriate TID.


2007 ◽  
Vol 21 (3) ◽  
pp. 943 ◽  
Author(s):  
Jonathan Esteve-Lanao ◽  
Carl Foster ◽  
Stephen Seiler ◽  
Alejandro Lucia

2017 ◽  
Vol 31 (1) ◽  
pp. 181-195 ◽  
Author(s):  
Adrián Varela-Sanz ◽  
José L. Tuimil ◽  
Laurinda Abreu ◽  
Daniel A. Boullosa

2013 ◽  
Vol 114 (4) ◽  
pp. 461-471 ◽  
Author(s):  
Craig M. Neal ◽  
Angus M. Hunter ◽  
Lorraine Brennan ◽  
Aifric O'Sullivan ◽  
D. Lee Hamilton ◽  
...  

This study was undertaken to investigate physiological adaptation with two endurance-training periods differing in intensity distribution. In a randomized crossover fashion, separated by 4 wk of detraining, 12 male cyclists completed two 6-wk training periods: 1) a polarized model [6.4 (±1.4 SD) h/wk; 80%, 0%, and 20% of training time in low-, moderate-, and high-intensity zones, respectively]; and 2) a threshold model [7.5 (±2.0 SD) h/wk; 57%, 43%, and 0% training-intensity distribution]. Before and after each training period, following 2 days of diet and exercise control, fasted skeletal muscle biopsies were obtained for mitochondrial enzyme activity and monocarboxylate transporter (MCT) 1 and 4 expression, and morning first-void urine samples were collected for NMR spectroscopy-based metabolomics analysis. Endurance performance (40-km time trial), incremental exercise, peak power output (PPO), and high-intensity exercise capacity (95% maximal work rate to exhaustion) were also assessed. Endurance performance, PPOs, lactate threshold (LT), MCT4, and high-intensity exercise capacity all increased over both training periods. Improvements were greater following polarized rather than threshold for PPO [mean (±SE) change of 8 (±2)% vs. 3 (±1)%, P < 0.05], LT [9 (±3)% vs. 2 (±4)%, P < 0.05], and high-intensity exercise capacity [85 (±14)% vs. 37 (±14)%, P < 0.05]. No changes in mitochondrial enzyme activities or MCT1 were observed following training. A significant multilevel, partial least squares-discriminant analysis model was obtained for the threshold model but not the polarized model in the metabolomics analysis. A polarized training distribution results in greater systemic adaptation over 6 wk in already well-trained cyclists. Markers of muscle metabolic adaptation are largely unchanged, but metabolomics markers suggest different cellular metabolic stress that requires further investigation.


2014 ◽  
Vol 9 (6) ◽  
pp. 1026-1032 ◽  
Author(s):  
Daniel J. Plews ◽  
Paul B. Laursen ◽  
Andrew E. Kilding ◽  
Martin Buchheit

Purpose:Elite endurance athletes may train in a polarized fashion, such that their training-intensity distribution preserves autonomic balance. However, field data supporting this are limited.Methods:The authors examined the relationship between heart-rate variability and training-intensity distribution in 9 elite rowers during the 26-wk build-up to the 2012 Olympic Games (2 won gold and 2 won bronze medals). Weekly averaged log-transformed square root of the mean sum of the squared differences between R-R intervals (Ln rMSSD) was examined, with respect to changes in total training time (TTT) and training time below the first lactate threshold (>LT1), above the second lactate threshold (LT2), and between LT1 and LT2 (LT1–LT2).Results:After substantial increases in training time in a particular training zone or load, standardized changes in Ln rMSSD were +0.13 (unclear) for TTT, +0.20 (51% chance increase) for time >LT1, –0.02 (trivial) for time LT1–LT2, and –0.20 (53% chance decrease) for time >LT2. Correlations (±90% confidence limits) for Ln rMSSD were small vs TTT (r = .37 ± .80), moderate vs time >LT1 (r = .43 ± .10), unclear vs LT1–LT2 (r = .01 ± .17), and small vs >LT2 (r = –.22 ± .50).Conclusion:These data provide supportive rationale for the polarized model of training, showing that training phases with increased time spent at high intensity suppress parasympathetic activity, while low-intensity training preserves and increases it. As such, periodized low-intensity training may be beneficial for optimal training programming.


Sign in / Sign up

Export Citation Format

Share Document