scholarly journals Transparent lateral boundary conditions for baroclinic waves II. Introducing potential vorticity waves

2006 ◽  
Vol 58 (2) ◽  
pp. 210-220 ◽  
Author(s):  
A. Mcdonald
2015 ◽  
Vol 28 (2) ◽  
pp. 468-484 ◽  
Author(s):  
Christopher G. Marciano ◽  
Gary M. Lackmann ◽  
Walter A. Robinson

Abstract Previous studies investigating the impacts of climate change on extratropical cyclones have primarily focused on changes in the frequency, intensity, and distribution of these events. Fewer studies have directly investigated changes in the storm-scale dynamics of individual cyclones. Precipitation associated with these events is projected to increase with warming owing to increased atmospheric water vapor content. This presents the potential for enhancement of cyclone intensity through increased lower-tropospheric diabatic potential vorticity generation. This hypothesis is tested using the Weather Research and Forecasting Model to simulate individual wintertime extratropical cyclone events along the United States East Coast in present-day and future thermodynamic environments. Thermodynamic changes derived from an ensemble of GCMs for the IPCC Fourth Assessment Report (AR4) A2 emissions scenario are applied to analyzed initial and lateral boundary conditions of observed strongly developing cyclone events, holding relative humidity constant. The perturbed boundary conditions are then used to drive future simulations of these strongly developing events. Present-to-future changes in the storm-scale dynamics are assessed using Earth-relative and storm-relative compositing. Precipitation increases at a rate slightly less than that dictated by the Clausius–Clapeyron relation with warming. Increases in cyclone intensity are seen in the form of minimum sea level pressure decreases and a strengthened 10-m wind field. Amplification of the low-level jet occurs because of the enhancement of latent heating. Storm-relative potential vorticity diagnostics indicate a strengthening of diabatic potential vorticity near the cyclone center, thus supporting the hypothesis that enhanced latent heat release is responsible for this regional increase in future cyclone intensity.


2017 ◽  
Author(s):  
Efisio Solazzo ◽  
Christian Hogrefe ◽  
Augustin Colette ◽  
Marta Garcia-Vivanco ◽  
Stefano Galmarini

Abstract. The work here complements the overview analysis of the modelling systems participating in the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3) by focusing on the performance for hourly surface ozone by two modelling systems, Chimere for Europe and CMAQ for North America. The evaluation strategy outlined in the course of the three phases of the AQMEII activity, aimed to build up a diagnostic methodology for model evaluation, is pursued here and novel diagnostic methods are proposed. In addition to evaluating the base case simulation in which all model components are configured in their standard mode, the analysis also makes use of sensitivity simulations in which the models have been applied by altering and/or zeroing lateral boundary conditions, emissions of anthropogenic precursors, and ozone dry deposition. To help understand of the causes of model deficiencies, the error components (bias, variance, and covariance) of the base case and of the sensitivity runs are analysed in conjunction with time-scale considerations and error modelling using the available error fields of temperature, wind speed, and NOx concentration. The results reveal the effectiveness and diagnostic power of the methods devised (which remains the main scope of this study), allowing the detection of the time scale and the fields that the two models are most sensitive to. The representation of planetary boundary layers (PBL) dynamics is pivotal to both models. In particular: i) The fluctuations slower than −1.5 days account for 70–85 % of the total ozone quadratic error; ii) A recursive, systematic error with daily periodicity is detected, responsible for 10–20 % of the quadratic total error; iii) Errors in representing the timing of the daily transition between stability regimes in the PBL are responsible for a covariance error as large as 9 ppb (as much as the standard deviation of the network-average ozone observations in summer in both Europe and North America); iv) The CMAQ ozone error has a weak/negligible dependence on the errors in NO2 and wind speed, while the error in NO2 significantly impacts the ozone error produced by Chimere; v) On a continent wide monitoring network-average, a zeroing out of anthropogenic emissions produces an error increase of 45 % (25 %) during summer and of 56 % (null) during winter for Chimere (CMAQ), while a zeroing out of lateral boundary conditions results in an ozone error increase of 30 % during summer and of 180 % during winter (CMAQ).


Sign in / Sign up

Export Citation Format

Share Document