Human Endometrial Epithelial Cells (EEC) Constitutively Express More Intercellular Adhesion Molecule (ICAM)-1 than Endometrial Stromal Cells (ESC) in Culture

2005 ◽  
Vol 54 (1) ◽  
pp. 5-12 ◽  
Author(s):  
Sylvie Defrère ◽  
Anne Van Langendonckt ◽  
Pierre Moulin ◽  
Philippe Befahy ◽  
Dolores Gonzalez ◽  
...  
2000 ◽  
pp. 477-480 ◽  
Author(s):  
B Gaffuri ◽  
L Airoldi ◽  
AM Di Blasio ◽  
P Vigano ◽  
AM Miragoli ◽  
...  

Although the mechanisms causing recurrent spontaneous abortion (RSA) remain frequently speculative, recent evidence indicates that a specific uterine immune-endocrine network plays a pivotal role in the continuation of pregnancy. We have recently demonstrated that an adhesion molecule of the immune system, named intercellular adhesion molecule (ICAM)-1, is markedly expressed at both protein and mRNA levels in endometrial stromal cells and is able to mediate their interaction with lymphoid cells. Moreover, we have shown that the soluble form of ICAM-1 (sICAM-1) can be released by the endometrium in a hormone-dependent manner. The present study was designed to determine whether surface and/or sICAM-1 expression by cultured endometrial stromal cells could be related to early pregnancy loss in patients with a history of unexplained RSA. Luteal-phase endometrial biopsies were obtained from eight patients who had experienced three or more consecutive unexplained RSAs in the first trimester and 12 control fertile women. Surface ICAM-1 was similarly expressed on luteal-phase endometrial cells obtained from women with and without a history of unexplained RSA. In contrast, the endometrial release of sICAM-1 was significantly lower in abortion-prone patients than in control women. sICAM-1 is a cytokine-inducible molecule able to interfere with several immunological responses and the reduced levels of the protein shed by the endometrium in patients who have suffered from unexplained RSAs may reflect the presence of an altered immunological environment during the early phases of pregnancy.


2001 ◽  
Vol 7 (S2) ◽  
pp. 580-581
Author(s):  
CA Witz ◽  
S Cho ◽  
VE Centonze ◽  
IA Montoya-Rodriguez ◽  
RS Schenken

Using human peritoneal explants, we have previously demonstrated that endometrial stromal cells (ESCs) and endometrial epithelial cells (EECs) attach to intact mesothelium. Attachment occurs within one hour and mesothelial invasion occurs within 18 hours (Figure 1). We have also demonstrated that, in vivo, the mesothelium overlies a continuous layer of collagen IV (Col IV).More recently we have used CLSM, to study the mechanism and time course of ESC and EEC attachment and invasion through mesothelial monolayers. in these studies, CellTracker® dyes were used to label cells. Mesothelial cells were labeled with chloromethylbenzoylaminotetramethylrhodamine (CellTracker Orange). Mesothelial cells were then plated on human collagen IV coated, laser etched coverslips. Mesothelial cells were cultured to subconfluence. ESCs and EECs, labeled with chloromethylfluorscein diacetate (CellTracker Green) were plated on the mesothelial monolayers. Cultures were examined at 1, 6, 12 and 24 hours with simultaneous differential interference contrast and CLSM.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ryo Yokomizo ◽  
Yukiko Fujiki ◽  
Harue Kishigami ◽  
Hiroshi Kishi ◽  
Tohru Kiyono ◽  
...  

Abstract Background Thin endometrium adversely affects reproductive success rates with fertility treatment. Autologous transplantation of exogenously prepared endometrium can be a promising therapeutic option for thin endometrium; however, endometrial epithelial cells have limited expansion potential, which needs to be overcome in order to make regenerative medicine a therapeutic strategy for refractory thin endometrium. Here, we aimed to perform long-term culture of endometrial epithelial cells in vitro. Methods We prepared primary human endometrial epithelial cells and endometrial stromal cells and investigated whether endometrial stromal cells and human embryonic stem cell-derived feeder cells could support proliferation of endometrial epithelial cells. We also investigated whether three-dimensional culture can be achieved using thawed endometrial epithelial cells and endometrial stromal cells. Results Co-cultivation with the feeder cells dramatically increased the proliferation rate of the endometrial epithelial cells. We serially passaged the endometrial epithelial cells on mouse embryonic fibroblasts up to passage 6 for 4 months. Among the human-derived feeder cells, endometrial stromal cells exhibited the best feeder activity for proliferation of the endometrial epithelial cells. We continued to propagate the endometrial epithelial cells on endometrial stromal cells up to passage 5 for 81 days. Furthermore, endometrial epithelium and stroma, after the freeze-thaw procedure and sequential culture, were able to establish an endometrial three-dimensional model. Conclusions We herein established a model of in vitro cultured endometrium as a potential therapeutic option for refractory thin endometrium. The three-dimensional culture model with endometrial epithelial and stromal cell orchestration via cytokines, membrane-bound molecules, extracellular matrices, and gap junction will provide a new framework for exploring the mechanisms underlying the phenomenon of implantation. Additionally, modified embryo culture, so-called “in vitro implantation”, will be possible therapeutic approaches in fertility treatment.


1992 ◽  
Vol 263 (1) ◽  
pp. L79-L87 ◽  
Author(s):  
D. C. Look ◽  
S. R. Rapp ◽  
B. T. Keller ◽  
M. J. Holtzman

To evaluate the factors controlling migration of leukocytes into pulmonary airway epithelium, we determined the biochemical mechanisms responsible for the regulation of intercellular adhesion molecule-1 (ICAM-1) expression on cultured monolayers of human tracheal epithelial cells (HTECs) or SV40 virus-transformed human bronchial epithelial cells (BEAS-2B). Validation experiments with human umbilical vein endothelial cells (HUVECs) demonstrated little detectable ICAM-1 expression on unstimulated cells or on cells incubated with interferon-gamma (IFN-gamma), but HUVEC monolayers responded to interleukin-1 beta (IL-1 beta) or tumor necrosis factor-alpha (TNF-alpha) with significant increases in ICAM-1 and ICAM-1-dependent adherence of polymorphonuclear leukocytes (PMNs). HTEC monolayers also exhibited no significant basal ICAM-1 expression but, in contrast to HUVEC monolayers, had marked increases in ICAM-1 expression and ICAM-1-dependent PMN adherence only after incubation with IFN-gamma (and not after IL-1 beta or TNF-alpha) treatment. BEAS-2B cells also exhibited relatively selective IFN-gamma stimulation of ICAM-1 expression and ICAM-1-dependent PMN adherence but (like late passage HTEC) showed significant basal ICAM-1 expression. Differences in IFN-gamma effect on ICAM-1 levels between HUVEC and HTEC monolayers were not due to differences in number or responsiveness of IFN-gamma receptors, because both cell types exhibited a similar number of receptors and other IFN-gamma-dependent responses of HUVECs remained active. In all analyses, ICAM-1 mRNA levels correlated closely with detection of ICAM-1 on the cell surface.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document