human collagen
Recently Published Documents


TOTAL DOCUMENTS

301
(FIVE YEARS 36)

H-INDEX

48
(FIVE YEARS 6)

Author(s):  
Cheng Hu ◽  
Wenqi Liu ◽  
Linyu Long ◽  
Zhicun Wang ◽  
Yihui Yuan ◽  
...  

Correction for ‘Microenvironment-responsive multifunctional hydrogels with spatiotemporal sequential release of tailored recombinant human collagen type III for the rapid repair of infected chronic diabetic wounds’ by Cheng Hu et al., J. Mater. Chem. B, 2021, 9, 9684–9699, DOI: 10.1039/D1TB02170B.


Talanta ◽  
2021 ◽  
pp. 123196
Author(s):  
Ramón Lorenzo-Gómez ◽  
Alfonso Casero-Álvarez ◽  
Rebeca Miranda-Castro ◽  
Marcos García-Ocaña ◽  
Juan R. de los Toyos ◽  
...  

2021 ◽  
Vol 148 (6S) ◽  
pp. 32S-38S
Author(s):  
Jasmine Seror ◽  
Miriam Stern ◽  
Revital Zarka ◽  
Nadav Orr

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 4042
Author(s):  
Thi My Do ◽  
Yang Yang ◽  
Aipeng Deng

Cardiovascular diseases, including coronary artery and peripheral vascular pathologies, are leading causes of mortality. As an alternative to autografts, prosthetic grafts have been developed to reduce the death rate. This study presents the development and characterization of bilayer vascular grafts with appropriate structural and biocompatibility properties. A polymer blend of recombinant human collagen (RHC) peptides and polycaprolactone (PCL) was used to build the inner layer of the graft by electrospinning and co-electrospinning the water-soluble polyethylene oxide (PEO) as sacrificial material together with PCL to generate the porous outer layer. The mechanical test demonstrated the bilayer scaffold’s appropriate mechanical properties as compared with the native vascular structure. Human umbilical vein endothelial cells (HUVEC) showed enhanced adhesion to the lumen after seeding on nanoscale fibers. Meanwhile, by enhancing the porosity of the microfibrous outer layer through the removal of PEO fibers, rat smooth muscle cells (A7r5) could proliferate and infiltrate the porous layer easily.


2021 ◽  
Author(s):  
Fatemeh Alimohammadi ◽  
Zohreh Hojati ◽  
Mazdak Ganjalikhani-Hakemi

Abstract Current medications for rheumatoid arthritis (RA), a common synovial autoimmune disease, are associated with adverse effects. Interestingly, interferon beta (IFNβ), effective in multiple sclerosis (MS) treatment, also can help decreasing articular destruction in RA. Here, a novel fusion protein was introduced containing human mutated IFNβ (with mutations in 27th and 101th residues; IFNβ27+101) fused to a single chain fragment variable (scFv) antibody against human collagen type II for decreasing IFNβ27+101 off-targets (according to drug targeting benefits) in future in vivo and clinical experiments. After designing, bioinformatic analyses and the recombinant vector transfection into HEK293 cells, the mutated IFNβ-scFv protein confirmation and function were assessed by SDS-PAGE, western blotting, ELISA, and real-time PCR. The fusion protein secondary and tertiary structures had proper folding. Also, the recombinant mRNA secondary structure considered stable. 2.35 fold difference between the test and negative control groups confirmed the scFv attachment to human collagen type II (p= 0.046). MxA 25.68 fold overexpression in peripheral blood mononuclear cells (PBMCs) treated with the recombinant protein compared with the non-treated sample (p= 0.0001), demonstrated IFNβ27+101 bioactivity as the fusion protein. In vitro and in silico studies verified function of mutated IFNβ-scFv, however in vivo studies are proposed for further validation.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2973
Author(s):  
Rory Gibney ◽  
Jennifer Patterson ◽  
Eleonora Ferraris

The development of commercial collagen inks for extrusion-based bioprinting has increased the amount of research on pure collagen bioprinting, i.e., collagen inks not mixed with gelatin, alginate, or other more common biomaterial inks. New printing techniques have also improved the resolution achievable with pure collagen bioprinting. However, the resultant collagen constructs still appear too weak to replicate dense collagenous tissues, such as the cornea. This work aims to demonstrate the first reported case of bioprinted recombinant collagen films with suitable optical and mechanical properties for corneal tissue engineering. The printing technology used, aerosol jet® printing (AJP), is a high-resolution printing method normally used to deposit conductive inks for electronic printing. In this work, AJP was employed to deposit recombinant human collagen type III (RHCIII) in overlapping continuous lines of 60 µm to form thin layers. Layers were repeated up to 764 times to result in a construct that was considered a few hundred microns thick when swollen. Samples were subsequently neutralised and crosslinked using EDC:NHS crosslinking. Nanoindentation and absorbance measurements were conducted, and the results show that the AJP-deposited RHCIII samples possess suitable mechanical and optical properties for corneal tissue engineering: an average effective elastic modulus of 506 ± 173 kPa and transparency ≥87% at all visible wavelengths. Circular dichroism showed that there was some loss of helicity of the collagen due to aerosolisation. SDS-PAGE and pepsin digestion were used to show that while some collagen is degraded due to aerosolisation, it remains an inaccessible substrate for pepsin cleavage.


Author(s):  
Michel Haagdorens ◽  
Elle Edin ◽  
Per Fagerholm ◽  
Marc Groleau ◽  
Zvi Shtein ◽  
...  

Abstract Purpose To determine feasibility of plant-derived recombinant human collagen type I (RHCI) for use in corneal regenerative implants Methods RHCI was crosslinked with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) to form hydrogels. Application of shear force to liquid crystalline RHCI aligned the collagen fibrils. Both aligned and random hydrogels were evaluated for mechanical and optical properties, as well as in vitro biocompatibility. Further evaluation was performed in vivo by subcutaneous implantation in rats and corneal implantation in Göttingen minipigs. Results Spontaneous crosslinking of randomly aligned RHCI (rRHCI) formed robust, transparent hydrogels that were sufficient for implantation. Aligning the RHCI (aRHCI) resulted in thicker collagen fibrils forming an opaque hydrogel with insufficient transverse mechanical strength for surgical manipulation. rRHCI showed minimal inflammation when implanted subcutaneously in rats. The corneal implants in minipigs showed that rRHCI hydrogels promoted regeneration of corneal epithelium, stroma, and nerves; some myofibroblasts were seen in the regenerated neo-corneas. Conclusion Plant-derived RHCI was used to fabricate a hydrogel that is transparent, mechanically stable, and biocompatible when grafted as corneal implants in minipigs. Plant-derived collagen is determined to be a safe alternative to allografts, animal collagens, or yeast-derived recombinant human collagen for tissue engineering applications. The main advantage is that unlike donor corneas or yeast-produced collagen, the RHCI supply is potentially unlimited due to the high yields of this production method. Lay Summary A severe shortage of human-donor corneas for transplantation has led scientists to develop synthetic alternatives. Here, recombinant human collagen type I made of tobacco plants through genetic engineering was tested for use in making corneal implants. We made strong, transparent hydrogels that were tested by implanting subcutaneously in rats and in the corneas of minipigs. We showed that the plant collagen was biocompatible and was able to stably regenerate the corneas of minipigs comparable to yeast-produced recombinant collagen that we previously tested in clinical trials. The advantage of the plant collagen is that the supply is potentially limitless.


Sign in / Sign up

Export Citation Format

Share Document