Time Series Analysis of Transmesothelial Invasion by Endometrial Stromal and Epithelial Cells Using Three-dimensional Confocal Microscopy

2001 ◽  
Vol 7 (S2) ◽  
pp. 580-581
Author(s):  
CA Witz ◽  
S Cho ◽  
VE Centonze ◽  
IA Montoya-Rodriguez ◽  
RS Schenken

Using human peritoneal explants, we have previously demonstrated that endometrial stromal cells (ESCs) and endometrial epithelial cells (EECs) attach to intact mesothelium. Attachment occurs within one hour and mesothelial invasion occurs within 18 hours (Figure 1). We have also demonstrated that, in vivo, the mesothelium overlies a continuous layer of collagen IV (Col IV).More recently we have used CLSM, to study the mechanism and time course of ESC and EEC attachment and invasion through mesothelial monolayers. in these studies, CellTracker® dyes were used to label cells. Mesothelial cells were labeled with chloromethylbenzoylaminotetramethylrhodamine (CellTracker Orange). Mesothelial cells were then plated on human collagen IV coated, laser etched coverslips. Mesothelial cells were cultured to subconfluence. ESCs and EECs, labeled with chloromethylfluorscein diacetate (CellTracker Green) were plated on the mesothelial monolayers. Cultures were examined at 1, 6, 12 and 24 hours with simultaneous differential interference contrast and CLSM.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ryo Yokomizo ◽  
Yukiko Fujiki ◽  
Harue Kishigami ◽  
Hiroshi Kishi ◽  
Tohru Kiyono ◽  
...  

Abstract Background Thin endometrium adversely affects reproductive success rates with fertility treatment. Autologous transplantation of exogenously prepared endometrium can be a promising therapeutic option for thin endometrium; however, endometrial epithelial cells have limited expansion potential, which needs to be overcome in order to make regenerative medicine a therapeutic strategy for refractory thin endometrium. Here, we aimed to perform long-term culture of endometrial epithelial cells in vitro. Methods We prepared primary human endometrial epithelial cells and endometrial stromal cells and investigated whether endometrial stromal cells and human embryonic stem cell-derived feeder cells could support proliferation of endometrial epithelial cells. We also investigated whether three-dimensional culture can be achieved using thawed endometrial epithelial cells and endometrial stromal cells. Results Co-cultivation with the feeder cells dramatically increased the proliferation rate of the endometrial epithelial cells. We serially passaged the endometrial epithelial cells on mouse embryonic fibroblasts up to passage 6 for 4 months. Among the human-derived feeder cells, endometrial stromal cells exhibited the best feeder activity for proliferation of the endometrial epithelial cells. We continued to propagate the endometrial epithelial cells on endometrial stromal cells up to passage 5 for 81 days. Furthermore, endometrial epithelium and stroma, after the freeze-thaw procedure and sequential culture, were able to establish an endometrial three-dimensional model. Conclusions We herein established a model of in vitro cultured endometrium as a potential therapeutic option for refractory thin endometrium. The three-dimensional culture model with endometrial epithelial and stromal cell orchestration via cytokines, membrane-bound molecules, extracellular matrices, and gap junction will provide a new framework for exploring the mechanisms underlying the phenomenon of implantation. Additionally, modified embryo culture, so-called “in vitro implantation”, will be possible therapeutic approaches in fertility treatment.


2019 ◽  
Vol 20 (15) ◽  
pp. 3740 ◽  
Author(s):  
Júlia Vallvé-Juanico ◽  
Carlos López-Gil ◽  
Agustín Ballesteros ◽  
Xavier Santamaria

Endometriosis is characterized by the presence of endometrial tissue outside the uterus. While endometriotic tissue is commonly localized in the pelvic cavity, it can also be found in distant sites, including the brain. The origin and pathophysiology of tissue migration is poorly understood; retrograde menstruation is thought to be the cause, although the presence of endometrium at distant sites is not explained by this hypothesis. To determine whether dissemination occurs via the bloodstream in women with endometriosis, we analyzed circulating blood for the presence of endometrial cells. Circulating endometrial stromal cells were identified only in women with endometriosis but not in controls, while endometrial epithelial cells were not identified in the circulation of either group. Our results support the hypothesis that endometrial stromal cells may migrate through circulation and promote the pathophysiology of endometriosis. The detection of these cells in circulation creates avenues for the development of less invasive diagnostic tools for the disease, and opens possibilities for further study of the origin of endometriosis.


2001 ◽  
Vol 15 (12) ◽  
pp. 2093-2105 ◽  
Author(s):  
Sijun Yang ◽  
Zongjuan Fang ◽  
Bilgin Gurates ◽  
Mitsutoshi Tamura ◽  
Josephine Miller ◽  
...  

Abstract Progesterone stimulates the expression of 17β-hydroxysteroid dehydrogenase (HSD) type 2, which catalyzes the conversion of the potent estrogen, E2, to an inactive form, estrone, in epithelial cells of human endometrial tissue. Various effects of progesterone on uterine epithelium have recently been shown to be mediated by stromal PRs in mice. We describe herein a critical paracrine mechanism whereby progesterone induction of 17β-HSD type 2 enzyme activity, transcript levels, and promoter activity in human endometrial epithelial cells are mediated primarily by PR in endometrial stromal cells. Medium conditioned with progestin-pretreated human endometrial stromal cells robustly increased 17β-HSD type 2 enzyme activity (2-fold) and mRNA levels (13.2-fold) in Ishikawa malignant endometrial epithelial cells. In contrast, direct progestin treatment of Ishikawa epithelial cells gave rise to much smaller increases in enzyme activity (1.2-fold) and mRNA levels (4-fold). These results suggest that progesterone- dependent paracrine factors arising from stromal cells are primarily responsible for the induction of epithelial 17β-HSD type 2 expression in the endometrium. We transfected serial deletion mutants of the −1,244 bp 5′-flanking region of the 17β-HSD type 2 gene into Ishikawa cells. No progesterone response elements could be identified upstream of the 17β-HSD type 2 promoter. Stromal PR-dependent induction of the 17β-HSD type 2 promoter was mediated by a critical regulatory region mapped to the −200/−100 bp sequence. Direct treatment of Ishikawa cells with progestin gave rise to a maximal increase in the activity of −200 bp/Luciferase construct only by 1.2-fold, whereas medium conditioned by progestin-pretreated endometrial stromal cells increased promoter activity up to 2.4-fold in a time- and concentration-dependent manner. The stimulatory effect of medium conditioned by progestin-pretreated stromal cells was enhanced strikingly by increasing stromal cell PR levels with the addition of estrogen. This epithelial-stromal interaction was specific for endometrial epithelial cells, since 17β-HSD type 2 could not be induced in malignant breast epithelial cells by media conditioned with progestin-treated breast or endometrial stromal cells. In conclusion, progesterone regulates the conversion of biologically active E2 to estrone by inducing the 17β-HSD type 2 enzyme in human endometrial epithelium primarily via PR in stromal cells, which secrete factors that induce transcription mediated primarily by the −200/−100 bp 5′-regulatory region of the 17β-HSD type 2 promoter.


1993 ◽  
Vol 21 (2) ◽  
pp. 191-195 ◽  
Author(s):  
Knut-Jan Andersen ◽  
Erik Ilsø Christensen ◽  
Hogne Vik

The tissue culture of multicellular spheroids from the renal epithelial cell line LLC-PK1 (proximal tubule) is described. This represents a biological system of intermediate complexity between renal tissue in vivo and simple monolayer cultures. The multicellular structures, which show many similarities to kidney tubules in vivo, including a vectorial water transport, should prove useful for studying the potential nephrotoxicity of drugs and chemicals in vitro. In addition, the propagation of renal epithelial cells as multicellular spheroids in serum-free culture may provide information on the release of specific biological parameters, which may be suppressed or masked in serum-supplemented media.


Reproduction ◽  
2007 ◽  
Vol 134 (1) ◽  
pp. 183-197 ◽  
Author(s):  
Gaetano Donofrio ◽  
Shan Herath ◽  
Chiara Sartori ◽  
Sandro Cavirani ◽  
Cesidio Filippo Flammini ◽  
...  

Bovinepostpartumuterine disease, metritis, affects about 40% of animals and is widely considered to have a bacterial aetiology. Although the γ-herpesvirus bovine herpesvirus 4 (BoHV-4) has been isolated from several outbreaks of metritis or abortion, the role of viruses in endometrial pathology and the mechanisms of viral infection of uterine cells are often ignored. The objectives of the present study were to explore the interaction, tropism and outcomes of BoHV-4 challenge of endometrial stromal and epithelial cells. Endometrial stromal and epithelial cells were purified and infected with a recombinant BoHV-4 carrying an enhanced green fluorescent protein (EGFP) expression cassette to monitor the establishment of infection. BoHV-4 efficiently infected both stromal and epithelial cells, causing a strong non-apoptotic cytopathic effect, associated with robust viral replication. The crucial step for the BoHV-4 endometriotropism appeared to be after viral entry as there was enhanced transactivation of the BoHV-4 immediate early 2 gene promoter following transient transfection into the endometrial cells. Infection with BoHV-4 increased cyclooxygenase 2 protein expression and prostaglandin estradiol secretion in endometrial stromal cells, but not epithelial cells. Bovine macrophages are persistently infected with BoHV-4, and co-culture with endometrial stromal cells reactivated BoHV-4 replication in the persistently infected macrophages, suggesting a symbiotic relationship between the cells and virus. In conclusion, the present study provides evidence of cellular and molecular mechanisms, supporting the concept that BoHV-4 is a pathogen associated with uterine disease.


Sign in / Sign up

Export Citation Format

Share Document