scholarly journals Outliers to the peak energy-isotropic energy relation in gamma-ray bursts

Author(s):  
E. Nakar ◽  
T. Piran
2018 ◽  
Vol 609 ◽  
pp. A112 ◽  
Author(s):  
G. Ghirlanda ◽  
F. Nappo ◽  
G. Ghisellini ◽  
A. Melandri ◽  
G. Marcarini ◽  
...  

Knowledge of the bulk Lorentz factor Γ0 of gamma-ray bursts (GRBs) allows us to compute their comoving frame properties shedding light on their physics. Upon collisions with the circumburst matter, the fireball of a GRB starts to decelerate, producing a peak or a break (depending on the circumburst density profile) in the light curve of the afterglow. Considering all bursts with known redshift and with an early coverage of their emission, we find 67 GRBs (including one short event) with a peak in their optical or GeV light curves at a time tp. For another 106 GRBs we set an upper limit tpUL. The measure of tp provides the bulk Lorentz factor Γ0 of the fireball before deceleration. We show that tp is due to the dynamics of the fireball deceleration and not to the passage of a characteristic frequency of the synchrotron spectrum across the optical band. Considering the tp of 66 long GRBs and the 85 most constraining upper limits, we estimate Γ0 or a lower limit Γ0LL. Using censored data analysis methods, we reconstruct the most likely distribution of tp. All tp are larger than the time Tp,γ when the prompt γ-ray emission peaks, and are much larger than the time Tph when the fireball becomes transparent, that is, tp>Tp,γ>Tph. The reconstructed distribution of Γ0 has median value ~300 (150) for a uniform (wind) circumburst density profile. In the comoving frame, long GRBs have typical isotropic energy, luminosity, and peak energy ⟨ Eiso ⟩ = 3(8) × 1050 erg, ⟨ Liso ⟩ = 3(15) × 1047 erg s-1, and ⟨ Epeak ⟩ = 1(2) keV in the homogeneous (wind) case. We confirm that the significant correlations between Γ0 and the rest frame isotropic energy (Eiso), luminosity (Liso), and peak energy (Ep) are not due to selection effects. When combined, they lead to the observed Ep−Eiso and Ep−Liso correlations. Finally, assuming a typical opening angle of 5 degrees, we derive the distribution of the jet baryon loading which is centered around a few 10-6M⊙.


2004 ◽  
Vol 606 (1) ◽  
pp. L33-L36 ◽  
Author(s):  
Ryo Yamazaki ◽  
Kunihito Ioka ◽  
Takashi Nakamura

1997 ◽  
Author(s):  
Demosthenes Kazanas ◽  
Lev G. Titarchuk ◽  
Xin-Min Hua

2012 ◽  
Vol 755 (1) ◽  
pp. 55 ◽  
Author(s):  
Z. B. Zhang ◽  
D. Y. Chen ◽  
Y. F. Huang

2020 ◽  
Vol 492 (3) ◽  
pp. 3622-3630
Author(s):  
Lin Lan ◽  
Rui-Jingi Lu ◽  
Hou-Jun Lü ◽  
Jun Shen ◽  
Jared Rice ◽  
...  

ABSTRACT Short gamma-ray bursts (GRB) with extended emission (EE) that are composed of an initial short hard spike followed by a long-lasting EE are thought to comprise a sucategory of short GRBs. The narrow energy band available during the Swift era, combined with a lack of spectral information, prevented the discovery of the intrinsic properties of these events. In this paper, we perform a systematic search of short GRBs with EE using all available Fermi/GBM data. The search identified 26 GBM-detected short GRBs with EE that are similar to GRB 060614 observed by Swift/BAT. We focus on investigating the spectral and temporal properties of both the hard spike and the EE component of all 26 GRBs, and explore differences and possible correlations between them. We find that while the peak energy (Ep) of the hard spikes is slightly harder than that of the EE, their fluences are comparable. The harder Ep seems to correspond to a larger fluence and peak flux, with a large scatter for both the hard spike and the EE component. Moreover, the Ep of both the hard spike and the EE are compared with other short GRBs. Finally, we also compare the properties of GRB 170817A with those of short GRBs with EE and find no significant statistical differences between them. We find that GRB 170817A has the lowest Ep, probably because it is off-axis.


1995 ◽  
Vol 454 ◽  
pp. 597 ◽  
Author(s):  
Robert S. Mallozzi ◽  
William S. Paciesas ◽  
Geoffrey N. Pendleton ◽  
Michael S. Briggs ◽  
Robert D. Preece ◽  
...  

2019 ◽  
Vol 625 ◽  
pp. A60 ◽  
Author(s):  
M. E. Ravasio ◽  
G. Ghirlanda ◽  
L. Nava ◽  
G. Ghisellini

The long-lasting tension between the observed spectra of gamma-ray bursts (GRBs) and the predicted synchrotron emission spectrum might be solved if electrons do not completely cool. Evidence of incomplete cooling was recently found in Swift GRBs with prompt observations down to 0.1 keV, and in one bright Fermi burst, GRB 160625B. Here we systematically search for evidence of incomplete cooling in the spectra of the ten brightest short and long GRBs observed by Fermi. We find that in eight out of ten long GRBs there is compelling evidence of a low-energy break (below the peak energy) and good agreement with the photon indices of the synchrotron spectrum (respectively −2/3 and −3/2 below the break and between the break and the peak energy). Interestingly, none of the ten short GRBs analysed shows a break, but the low-energy spectral slope is consistent with −2/3. In a standard scenario, these results imply a very low magnetic field in the emission region (B′∼10 G in the comoving frame), at odd with expectations.


2002 ◽  
Vol 2 (4) ◽  
pp. 347-351 ◽  
Author(s):  
En-Wei Liang ◽  
Yi-Ping Qin ◽  
Yun-Ming Dong ◽  
Guang-Zhong Xie

Sign in / Sign up

Export Citation Format

Share Document