scholarly journals Relativistic jets and long-duration gamma-ray bursts from the birth of magnetars

2008 ◽  
Vol 383 (1) ◽  
pp. L25-L29 ◽  
Author(s):  
N. Bucciantini ◽  
E. Quataert ◽  
J. Arons ◽  
B. D. Metzger ◽  
T. A. Thompson
2013 ◽  
Vol 773 (1) ◽  
pp. L7 ◽  
Author(s):  
Lucille H. Frey ◽  
Chris L. Fryer ◽  
Patrick A. Young

2008 ◽  
Vol 17 (10) ◽  
pp. 1761-1767 ◽  
Author(s):  
K.-I. NISHIKAWA ◽  
Y. MIZUNO ◽  
G. J. FISHMAN ◽  
P. HARDEE

Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electron-positron) jets show that acceleration occurs within the downstream jet. Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electrons' transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties to synchrotron radiation which assumes a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.


2011 ◽  
Vol 7 (S279) ◽  
pp. 75-82
Author(s):  
Paolo A. Mazzali

AbstractThe properties of the Supernovae discovered in coincidence with long-duration Gamma-ray Bursts and X-Ray Flashes are reviewed, and compared to those of SNe for which GRBs are not observed. The SNe associated with GRBs are of Type Ic, they are brighter than the norm, and show very broad absorption lines in their spectra, indicative of high expansion velocities and hence of large explosion kinetic energies. This points to a massive star origin, and to the birth of a black hole at the time of core collapse. There is strong evidence for gross asymmetries in the SN ejecta. The observational evidence seems to suggest that GRB/SNe are more massive and energetic than XRF/SNe, and come from more massive stars. While for GRB/SNe the collapsar model is favoured, XRF/SNe may host magnetars.


2015 ◽  
Vol 561 ◽  
pp. 1-109 ◽  
Author(s):  
Pawan Kumar ◽  
Bing Zhang

Author(s):  
D Watson ◽  
J.P.U Fynbo ◽  
C.C Thöne ◽  
J Sollerman

There is strong evidence that long-duration gamma-ray bursts (GRBs) are produced during the collapse of a massive star. In the standard version of the collapsar model, a broad-lined and luminous Type Ic core-collapse supernova (SN) accompanies the GRB. This association has been confirmed in observations of several nearby GRBs. Recent observations show that some long-duration GRBs are different. No SN emission accompanied the long-duration GRBs 060505 and 060614 down to limits fainter than any known Type Ic SN and hundreds of times fainter than the archetypal SN 1998bw that accompanied GRB 980425. Multi-band observations of the early afterglows, as well as spectroscopy of the host galaxies, exclude the possibility of significant dust obscuration. Furthermore, the bursts originated in star-forming galaxies, and in the case of GRB 060505, the burst was localized to a compact star-forming knot in a spiral arm of its host galaxy. We find that the properties of the host galaxies, the long duration of the bursts and, in the case of GRB 060505, the location of the burst within its host, all imply a massive stellar origin. The absence of an SN to such deep limits therefore suggests a new phenomenological type of massive stellar death.


2007 ◽  
Vol 657 (2) ◽  
pp. L77-L80 ◽  
Author(s):  
Nozomu Tominaga ◽  
Keiichi Maeda ◽  
Hideyuki Umeda ◽  
Ken'ichi Nomoto ◽  
Masaomi Tanaka ◽  
...  

10.14311/1496 ◽  
2012 ◽  
Vol 52 (1) ◽  
Author(s):  
Z. Bagoly ◽  
P. Veres ◽  
I. Horváth ◽  
A. Mészáros ◽  
L. G. Balázs

Gamma-ray bursts are usually classified into either short-duration or long-duration bursts. Going beyond the short-long classification scheme, it has been shown on statistical grounds that a third, intermediate population is needed in this classification scheme. We are looking for physical properties which discriminate the intermediate duration bursts from the other two classes. As the intermediate group is the softest, we argue that we have related them with X-ray flashes among the GRBs. We give a new, probabilistic definition for this class of events.


2021 ◽  
Author(s):  
Gor Oganesyan ◽  
Sergey Karpov ◽  
Martin Jelinek ◽  
Gregory Beskin ◽  
Samuele Ronchini ◽  
...  

Abstract Long gamma-ray bursts (GRBs) are produced by the dissipation of ultra-relativistic jets launched by newly-born black holes after the collapse of massive stars. Right after the luminous and highly variable gamma-ray emission, the multi-wavelength afterglow is released by the external dissipation of the jet in circumburst medium. We report the discovery of a very bright (10 mag) optical emission 28 s after the explosion of the extremely luminous and energetic GRB 210619B located at redshift 1.937. Early multi-filter observations allowed us to witness the end of the shock wave propagation into the GRB ejecta. We observed the spectral transition from a bright reverse to the forward shock emission, demonstrating that the early and late GRB multi-wavelength emission is originated from a very narrow jet propagating into an unusually rarefied interstellar medium. We also find evidence of an additional component of radiation, coming from the jet wings which is able explain the uncorrelated optical/X-ray emission.


Sign in / Sign up

Export Citation Format

Share Document