Simulation of Na/K Pump Current-Voltage Relationship

1992 ◽  
Vol 671 (1 Ion-Motive AT) ◽  
pp. 449-451 ◽  
Author(s):  
X.-Y. LIU ◽  
T. A. KINARD ◽  
J. R. STIMERS
2002 ◽  
Vol 283 (5) ◽  
pp. C1511-C1521 ◽  
Author(s):  
Peter S. Hansen ◽  
Kerrie A. Buhagiar ◽  
Benjamin Y. Kong ◽  
Ronald J. Clarke ◽  
David F. Gray ◽  
...  

To examine effects of cytosolic Na+, K+, and Cs+ on the voltage dependence of the Na+-K+ pump, we measured Na+-K+ pump current ( I p) of ventricular myocytes voltage-clamped at potentials ( V m) from −100 to +60 mV. Superfusates were designed to eliminate voltage dependence at extracellular pump sites. The cytosolic compartment of myocytes was perfused with patch pipette solutions with a Na+ concentration ([Na]pip) of 80 mM and a K+ concentration from 0 to 80 mM or with solutions containing Na+ in concentrations from 0.1 to 100 mM and K+ in a concentration of either 0 or 80 mM. When [Na]pip was 80 mM, K+ in pipette solutions had a voltage-dependent inhibitory effect on I pand induced a negative slope of the I p- V m relationship. Cs+ in pipette solutions had an effect on I p qualitatively similar to that of K+. Increases in I p with increases in [Na]pip were voltage dependent. The dielectric coefficient derived from [Na]pip- I p relationships at the different test potentials was 0.15 when pipette solutions included 80 mM K+ and 0.06 when pipette solutions were K+free.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Shigetomo Suyama ◽  
Alexandra Ralevski ◽  
Zhong-Wu Liu ◽  
Marcelo O Dietrich ◽  
Toshihiko Yada ◽  
...  

POMC neurons integrate metabolic signals from the periphery. Here, we show in mice that food deprivation induces a linear current-voltage relationship of AMPAR-mediated excitatory postsynaptic currents (EPSCs) in POMC neurons. Inhibition of EPSCs by IEM-1460, an antagonist of calcium-permeable (Cp) AMPARs, diminished EPSC amplitude in the fed but not in the fasted state, suggesting entry of GluR2 subunits into the AMPA receptor complex during food deprivation. Accordingly, removal of extracellular calcium from ACSF decreased the amplitude of mEPSCs in the fed but not the fasted state. Ten days of high-fat diet exposure, which was accompanied by elevated leptin levels and increased POMC neuronal activity, resulted in increased expression of Cp-AMPARs on POMC neurons. Altogether, our results show that entry of calcium via Cp-AMPARs is inherent to activation of POMC neurons, which may underlie a vulnerability of these neurons to calcium overload while activated in a sustained manner during over-nutrition.


1996 ◽  
Vol 270 (6) ◽  
pp. C1807-C1814 ◽  
Author(s):  
L. Liu ◽  
S. A. Simon

Nicotine and capsaicin produce many similar physiological responses that include pain, irritation, and vasodilation. To determine whether neuronal nicotine acetylcholine receptors (nAChR) are present on capsaicin-sensitive neurons, whole cell patch-clamp recordings were performed on rat trigeminal ganglion cells. It was found that approximately 20% of the total number of neurons tested was activated by both 100 microM nicotine and 1 nM capsaicin. Other subsets of neurons were activated by only one of these compounds, whereas a fourth subset was not activated by either compound. At -60 mV, the magnitude of the capsaicin-activated currents was about three times larger than the magnitude of the nicotine-activated currents. The current-voltage relationship of the nAChR exhibited marked rectification, such that for voltages > or = 0 mV the current was essentially zero. In contrast, the current-voltage relationship of the capsaicin-activated current was ohmic from +/- 60 mV. These data indicate the existence of subsets of capsaicin-sensitive afferent neurons.


1990 ◽  
Vol 151 (1) ◽  
pp. 21-39 ◽  
Author(s):  
JONATHAN A. DAVID ◽  
DAVID B. SATTELLE

The ionic basis of the resting potential and of the response to acetylcholine (ACh) has been investigated in the cell body membrane of the fast coxal depressor motor neurone in the metathoracic ganglion of the cockroach Periplaneta americana. By means of ion-sensitive microelectrodes, intracellular concentrations of three ion species were estimated (mmoll−1): [K+]i, 1443; [Na+]i, 9±1; [Cl−], 7±1. The resting potential of continuously superfused cells was −75.6±1.9mV at 22° C. A change in resting potential of 42.0±2.5mV accompanied a decade change in [K+]o. Experiments with (10−4moll−1) ouabain, Na+ injection, low temperature (10°C) and non-superfused cells indicated the presence of an electrogenic sodium pump. Under current-clamp, the cell body membrane was depolarized by sequentially applied, ionophoretic pulses (500ms duration) of ACh. Under voltage-clamp, such doses of ACh resulted in an inward current which was abolished in low-Na+ saline. Ion-sensitive electrodes revealed an increase in [Na+]i but no change in [Cl−1]j in response to externally applied ACh. The ACh-induced current-voltage relationship was shifted in a negative direction by low-K+ saline. The AChinduced inward current was usually followed by a delayed outward current which reversed at Ek. Low-K+ saline had the same effect on this outward component as depolarizing the membrane. This suggests that the outward current component is carried by K+. The ACh-induced inward current and the delayed outward current were potentiated either when [Ca2+]i was lowered by injecting the calcium chelator BAPTA or by exposure of the cell to low-Ca2+ saline. High-Ca2+ saline reduced the inward component of the response and produced a negative shift in the AChinduced current-voltage relationship. The amplitude of the delayed outward


Sign in / Sign up

Export Citation Format

Share Document