low k
Recently Published Documents


TOTAL DOCUMENTS

3956
(FIVE YEARS 362)

H-INDEX

67
(FIVE YEARS 8)

2022 ◽  
Vol 43 (2) ◽  
pp. 675-692
Author(s):  
Deise Silva Castro Pimentel Cardoso Cardoso ◽  
◽  
Herminia Emilia Prieto Martinez ◽  
Ariana Mota Pereira ◽  
Maria Catarina Megumi Kasuya ◽  
...  

Tomato plants respond well to potassium fertilization, whose insufficiency leads to a drop in fruit production and quality. On the other hand, the association of growth-promoting fungi (GPF) with roots has been shown to be able to optimize nutrient absorption, which implies lower financial costs and a decreased risk of loss of K applied to the soil. The objective of this study was to investigate the effects of inoculation with GPF and K rates on the postharvest quality of grape tomato hybrid ‘Mascot’ grown in a hydroponic system. The plants were cultivated in a hydroponic drip system using washed and sterilized sand as substrate. They were trained with two stems, leaving three bunches per stem. The experiment was carried out in a splitsplit-plot arrangement in a completely randomized design with three replicates. Ripe fruits were stored for 30 days in PET containers in storage chambers at a temperature of 25 °C. After 0, 10, 20 and 30 days of storage, five fruits were collected to determine the titratable acidity (TA) and soluble solids (SS), reducing sugars (RS) and vitamin C contents. The K rates provided an increase in the quality attributes. At low K rates, inoculation with GPF led to higher TA, SS, RS and vitamin C values. Inoculation of the plants with GPF improved the postharvest preservation of the fruits, especially when the plants underwent nutritional stress during cultivation.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 564
Author(s):  
Beate Capraro ◽  
Manuel Heidenreich ◽  
Jörg Töpfer

We have studied the sintering behavior of CT708 LTCC tapes with large CTE of 10.6 ppm/K. This low-k dielectric LTCC material is a quartz-based glass ceramic composite system with partial crystallization of celsian upon firing. The shrinkage, densification and dielectric properties were examined using different heating rates and a sintering temperature of 900 °C. The maximum shrinkage rate is at 836 °C (for a heating rate of 2 K/min) with a sintering density of 95% and a permittivity of ε’ = 5.9 and tan δ = 0.0004 (at 1 GHz). Due to their similar shrinkage and thermal expansion properties, CT708 tapes may be cofired with functional ceramic layers. As an example, we report on cofiring of a multilayer laminate of CT708 and a Sc-substituted hexagonal ferrite for applications as integrated microwave circulator components. This demonstrates the feasibility of cofiring of functional ceramic tapes and tailored LTCC tapes and documents the potential for the realization of complex LTCC multilayer architectures.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Hiroaki Ogata ◽  
Katsuyuki Katahira ◽  
Aimi Enokizu-Ogawa ◽  
Yujiro Jingushi ◽  
Akiko Ishimatsu ◽  
...  

Abstract Background Asthma–chronic obstructive pulmonary disease (COPD) overlap (ACO) patients experience exacerbations more frequently than those with asthma or COPD alone. Since low diffusing capacity of the lung for carbon monoxide (DLCO) is known as a strong risk factor for severe exacerbation in COPD, DLCO or a transfer coefficient of the lung for carbon monoxide (KCO) is speculated to also be associated with the risk of exacerbations in ACO. Methods This study was conducted as an observational cohort survey at the National Hospital Organization Fukuoka National Hospital. DLCO and KCO were measured in 94 patients aged ≥ 40 years with a confirmed diagnosis of ACO. Multivariable-adjusted hazard ratios (HRs) for the exacerbation-free rate over one year were estimated and compared across the levels of DLCO and KCO. Results Within one year, 33.3% of the cohort experienced exacerbations. After adjustment for potential confounders, low KCO (< 80% per predicted) was positively associated with the incidence of exacerbation (multivariable-adjusted HR = 3.71 (95% confidence interval 1.32–10.4)). The association between low DLCO (< 80% per predicted) and exacerbations showed similar trends, although it failed to reach statistical significance (multivariable-adjusted HR = 1.31 (95% confidence interval 0.55–3.11)). Conclusions Low KCO was a significant risk factor for exacerbations among patients with ACO. Clinicians should be aware that ACO patients with impaired KCO are at increased risk of exacerbations and that careful management in such a population is mandatory.


2022 ◽  
Vol 12 ◽  
Author(s):  
Nannan Zhang ◽  
Xiaomin Feng ◽  
Qiaoying Zeng ◽  
Huanzhang Lin ◽  
Zilin Wu ◽  
...  

Sugarcane is among the most important global crops and a key bioenergy source. Sugarcane production is restricted by limited levels of available soil potassium (K+). The ability of plants to respond to stressors can be regulated by a range of microRNAs (miRNAs). However, there have been few studies regarding the roles of miRNAs in the regulation of sugarcane responses to K+-deficiency. To understand how these non-coding RNAs may influence sugarcane responses to low-K+ stress, we conducted expression profiling of miRNAs in sugarcane roots under low-K+ conditions via high-throughput sequencing. This approach led to the identification of 324 and 42 known and novel miRNAs, respectively, of which 36 were found to be differentially expressed miRNAs (DEMs) under low-K+ conditions. These results also suggested that miR156-x/z and miR171-x are involved in these responses as potential regulators of lateral root formation and the ethylene signaling pathway, respectively. A total of 705 putative targets of these DEMs were further identified through bioinformatics predictions and degradome analyses, and GO and KEGG enrichment analyses revealed these target mRNAs to be enriched for catalytic activity, binding functions, metabolic processes, plant hormone signal transduction, and mitogen-activated protein kinase (MAPK) signaling. In summary, these data provide an overview of the roles of miRNAs in the regulation of sugarcane response to low-K+ conditions.


2021 ◽  
Vol 23 (1) ◽  
pp. 383
Author(s):  
Zhi-Fang Wang ◽  
Ting-Wei Mi ◽  
Yong-Qiang Gao ◽  
Han-Qian Feng ◽  
Wei-Hua Wu ◽  
...  

Potassium and nitrogen are essential mineral elements for plant growth and development. The protein kinase LKS1/CIPK23 is involved in both K+ and NH4+ uptake in Arabidopsis root. The transcripts of LKS1 can be induced by low K+ (0.1 mM) and high NH4+ (30 mM); however, the molecular mechanism is still unknown. In this study, we isolated the transcription factor STOP1 that positively regulates LKS1 transcription in Arabidopsis responses to both low-K+ and high-NH4+ stresses. STOP1 proteins can directly bind to the LKS1 promoter, promoting its transcription. The stop1 mutants displayed a leaf chlorosis phenotype similar to lks1 mutant when grown on low-K+ and high-NH4+ medium. On the other hand, STOP1 overexpressing plants exhibited a similar tolerant phenotype to LKS1 overexpressing plants. The transcript level of STOP1 was only upregulated by low K+ rather than high NH4+; however, the accumulation of STOP1 protein in the nucleus was required for the upregulation of LKS1 transcripts in both low-K+ and high-NH4+ responses. Our data demonstrate that STOP1 positively regulates LKS1 transcription under low-K+ and high-NH4+ conditions; therefore, LKS1 promotes K+ uptake and inhibits NH4+ uptake. The STOP1/LKS1 pathway plays crucial roles in K+ and NH4+ homeostasis, which coordinates potassium and nitrogen balance in plants in response to external fluctuating nutrient levels.


Author(s):  
V. N. Kruchinin ◽  
V. A. Volodin ◽  
S. V. Rykhlitskii ◽  
V. A. Gritsenko ◽  
I. P. Posvirin ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ivan Rodrigo Wolf ◽  
Rafael Plana Simões ◽  
Guilherme Targino Valente

AbstractGene regulatory networks (GRNs) play key roles in development, phenotype plasticity, and evolution. Although graph theory has been used to explore GRNs, associations amongst topological features, transcription factors (TFs), and systems essentiality are poorly understood. Here we sought the relationship amongst the main GRN topological features that influence the control of essential and specific subsystems. We found that the Knn, page rank, and degree are the most relevant GRN features: the ones are conserved along the evolution and are also relevant in pluripotent cells. Interestingly, life-essential subsystems are governed mainly by TFs with intermediary Knn and high page rank or degree, whereas specialized subsystems are mainly regulated by TFs with low Knn. Hence, we suggest that the high probability of TFs be toured by a random signal, and the high probability of the signal propagation to target genes ensures the life-essential subsystems’ robustness. Gene/genome duplication is the main evolutionary process to rise Knn as the most relevant feature. Herein, we shed light on unexplored topological GRN features to assess how they are related to subsystems and how the duplications shaped the regulatory systems along the evolution. The classification model generated can be found here: https://github.com/ivanrwolf/NoC/.


Sign in / Sign up

Export Citation Format

Share Document