670 nm Red Light Preconditioning Supports Müller Cell Function: Evidence from the White Light-induced Damage Model in the Rat Retina†

2012 ◽  
Vol 88 (6) ◽  
pp. 1418-1427 ◽  
Author(s):  
Rizalyn Albarracin ◽  
Krisztina Valter
1991 ◽  
Vol 53 (1) ◽  
pp. 115-122 ◽  
Author(s):  
M. Virgili ◽  
R. Paulsen ◽  
L. Villani ◽  
A. Contestabile ◽  
F. Fonnum

Glia ◽  
2004 ◽  
Vol 48 (1) ◽  
pp. 44-50 ◽  
Author(s):  
Yukitoshi Izumi ◽  
Mio Matsukawa ◽  
Ann M. Benz ◽  
Masayo Izumi ◽  
Makoto Ishikawa ◽  
...  

2016 ◽  
Vol 48 (12) ◽  
pp. e280-e280 ◽  
Author(s):  
Ao-Wang Qiu ◽  
Zheng Bian ◽  
Ping-An Mao ◽  
Qing-Huai Liu

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
D. M. Skytt ◽  
A. K. Toft-Kehler ◽  
C. T. Brændstrup ◽  
S. Cejvanovic ◽  
I. S. Gurubaran ◽  
...  

Glia-neuron partnership is important for inner retinal homeostasis and any disturbances may result in retinal ganglion cell (RGC) death. Müller cells support RGCs with essential functions such as removing excess glutamate and providing energy sources. The aim was to explore the impact of Müller cells on RGC survival. To investigate the Müller cell/RGC interactions we developed a coculture model, in which primary Müller cells were grown in inserts on top of pure primary RGC cultures. The impact of starvation and mitochondrial inhibition on the Müller cell ability to protect RGCs was studied. Moreover, the ability of Müller cells to remove glutamate from the extracellular space was investigated. RGC survival was evaluated by cell viability assays and glutamate uptake was assessed by kinetic uptake assays. We demonstrated a significantly increased RGC survival in presence of untreated and prestarved Müller cells. Additionally, prestarved Müller cells significantly increased RGC survival after mitochondrial inhibition. Finally, we revealed a significantly increased ability to take up glutamate in starved Müller cells. Overall, our study confirms essential roles of Müller cells in RGC survival. We suggest that targeting Müller cell function could have potential for future treatment strategies to prevent blinding neurodegenerative retinal diseases.


2014 ◽  
Vol 40 (12) ◽  
pp. 1245-1260 ◽  
Author(s):  
Linnéa Taylor ◽  
Karin Arnér ◽  
Fredrik Ghosh

Nature ◽  
1977 ◽  
Vol 268 (5621) ◽  
pp. 654-655 ◽  
Author(s):  
ROGER E. RIEPE ◽  
MICHAEL D. NORENBURG

2017 ◽  
Vol 41 (3) ◽  
pp. 960-972 ◽  
Author(s):  
Ao-Wang Qiu ◽  
Qing-Huai Liu ◽  
Jun-Ling Wang

Background/Aims: Interleukin (IL)-17A, a proinflammatory cytokine, has been implicated in several autoimmune diseases. However, it is unclear whether IL-17A is involved in diabetic retinopathy (DR), one of the most serious complications of autoimmune diabetes. This study aimed to demonstrate that IL-17A exacerbates DR by affecting retinal Müller cell function. Methods: High glucose (HG)-treated rat Müller cell line (rMC-1) was exposed to IL-17A, anti-IL-17A-neutralizing monoclonal antibody (mAb) or/and anti-IL-17 receptor (R)A-neutralizing mAb for 24 h. For in vivo study, DR was induced by intraperitoneal injections of streptozotocin (STZ). DR model mice were treated with anti-IL-17A mAb or anti-IL-17RA mAb in the vitreous cavity. Mice that were prepared for retinal angiography were sacrificed two weeks after intravitreal injection, while the rest were sacrificed two days after intravitreal injection. Results: IL-17A production and IL-17RA expression were increased in both HG-treated rMC-1 and DR retina. HG induced rMC-1 activation and dysfunction, as determined by the increased GFAP, VEGF and glutamate levels as well as the downregulated GS and EAAT1 expression. IL-17A exacerbated the HG-induced rMC-1 functional disorders, whereas either anti-IL-17A mAb or anti-IL-17RA mAb alleviated the HG-induced rMC-1 disorders. Intravitreal injections with anti-IL-17A mAb or anti-IL-17RA mAb in DR model mice reduced Müller cell dysfunction, vascular leukostasis, vascular leakage, tight junction protein downregulation and ganglion cell apoptosis in the retina. Conclusions: IL-17A aggravates DR-like pathology at least partly by impairing retinal Müller cell function. Blocking IL-17A is a potential therapeutic strategy for DR.


Sign in / Sign up

Export Citation Format

Share Document