TRPV1 receptors are involved in protein nitration and Müller cell reaction in the acutely axotomized rat retina

2010 ◽  
Vol 91 (5) ◽  
pp. 755-768 ◽  
Author(s):  
Mauro Leonelli ◽  
Daniel O. Martins ◽  
Luiz R.G. Britto
1991 ◽  
Vol 53 (1) ◽  
pp. 115-122 ◽  
Author(s):  
M. Virgili ◽  
R. Paulsen ◽  
L. Villani ◽  
A. Contestabile ◽  
F. Fonnum

Glia ◽  
2004 ◽  
Vol 48 (1) ◽  
pp. 44-50 ◽  
Author(s):  
Yukitoshi Izumi ◽  
Mio Matsukawa ◽  
Ann M. Benz ◽  
Masayo Izumi ◽  
Makoto Ishikawa ◽  
...  

2014 ◽  
Vol 40 (12) ◽  
pp. 1245-1260 ◽  
Author(s):  
Linnéa Taylor ◽  
Karin Arnér ◽  
Fredrik Ghosh

Nature ◽  
1977 ◽  
Vol 268 (5621) ◽  
pp. 654-655 ◽  
Author(s):  
ROGER E. RIEPE ◽  
MICHAEL D. NORENBURG

1999 ◽  
Vol 16 (6) ◽  
pp. 1169-1180 ◽  
Author(s):  
GENEVIEVE A. NAPPER ◽  
MICHAEL KALLONIATIS

Glutamate and γ-aminobutyric acid (GABA) are the dominant amino acids in the retina and brain. The manufacturing and degradation pathways of both of these amino acids are intricately linked with the tricarboxylic acid cycle leading to rapid redistribution of these amino acids after metabolic insult. Postmortem ischemia in mammalian retina predominantly results in a loss of glutamate and GABA from neurons and accumulation of these amino acids within Müller cells. This accumulation of glutamate and GABA in Müller cells may occur as a result of increased release of these neurotransmitters from neurons, and decreased degradation. Quantification of the semisaturation value (half-maximal response) for glutamate and GABA Müller cell loading during postmortem ischemia indicated a shorter semisaturation value for GABA than glutamate. Such changes are consistent with a single aerobically dependent GABA-degradation pathway, and the existence of multiple glutamate-degradation pathways. Comparison with the in vitro ischemic model showed similar qualitative characteristics, but a markedly increased semisaturation time for glutamate and GABA Müller cell loading (a factor of 5–10) in the postmortem ischemia model. We interpret these differences to indicate that the in vitro condition provides a more immediate and/or severe ischemic insult. In the postmortem ischemia model, the delayed glial cell loading implies the availability of internal stores of both glucose and/or oxygen. Increased glial and neuronal immunoreactivity for the amino acids involved in transamination reactions, aspartate, alanine, leucine, and ornithine was observed, indicating a potential shift in the equilibrium of transamination reactions associated with glutamate production. These findings provide evidence that, in the rat retina, there are multiple pathways subserving glutamate production/degradation that include a multitude of transamination reactions. Further evidence is therefore provided to support a role for all four amino acids in glutamate metabolism within a variety of retinal neurons and glia.


Author(s):  
A. W. Sedar ◽  
G. H. Bresnick

After experimetnal damage to the retina with a variety of procedures Müller cell hypertrophy and migration occurs. According to Kuwabara and others the reactive process in these injuries is evidenced by a marked increase in amount of glycogen in the Müller cells. These cells were considered originally supporting elements with fiber processes extending throughout the retina from inner limiting membrane to external limiting membrane, but are known now to have high lactic acid dehydrogenase activity and the ability to synthesize glycogen. Since the periodic acid-chromic acid-silver methenamine technique was shown to demonstrate glycogen at the electron microscope level, it was selected to react with glycogen in the fine processes of the Müller cell that ramify among the neural elements in various layers of the retina and demarcate these cells cytologically. The Rhesus monkey was chosen as an example of a well vascularized retina and the rabbit as an example of a avascular retina to explore the possibilities of the technique.


Sign in / Sign up

Export Citation Format

Share Document