A systematic review of empirical research on learning with 3D printing technology

Author(s):  
Elena Novak ◽  
Megan Brannon ◽  
Mila Rosa Librea‐Carden ◽  
Amy L. Haas
2020 ◽  
Vol 36 (4) ◽  
pp. 349-355 ◽  
Author(s):  
Carole Serrano ◽  
Sarah Fontenay ◽  
Hélène van den Brink ◽  
Judith Pineau ◽  
Patrice Prognon ◽  
...  

AbstractObjectivesThe use of three-dimensional (3D) printing in surgery is expanding and there is a focus on comprehensively evaluating the clinical impact of this technology. However, although additional costs are one of the main limitations to its use, little is known about its economic impact. The purpose of this systematic review is to identify the costs associated with its use and highlight the first quantitative data available.MethodsA systematic literature review was conducted in the PubMed and Embase databases and in the National Health Service Economic Evaluation Database (NHS EED) at the University of York. Studies that reported an assessment of the costs associated with the use of 3D printing for surgical application and published between 2009 and 2019, in English or French, were included.ResultsNine studies were included in our review. Nine types of costs were identified, the three main ones being printing material costs (n = 6), staff costs (n = 3), and operating room costs (n = 3). The printing cost ranged from less than U.S. dollars (USD) 1 to USD 146 (in USD 2019 values) depending on the criteria used to calculate this cost. Three studies evaluated the potential savings generated by the use of 3D printing technology in surgery, based on operating time reduction.ConclusionThis literature review highlights the lack of reliable economic data on 3D printing technology. Nevertheless, this review makes it possible to identify expenditures or items that should be considered in order to carry out more robust studies.


2021 ◽  
Vol 6 (2) ◽  
pp. 130-138
Author(s):  
Mohsen Raza ◽  
Daniel Murphy ◽  
Yael Gelfer

Three-dimensional (3D) printing technology is increasingly being utilized in various surgical specialities. In paediatric orthopaedics it has been applied in the pre-operative and intra-operative stages, allowing complex deformities to be replicated and patient-specific instrumentation to be used. This systematic review analyses the literature on the effect of 3D printing on paediatric orthopaedic osteotomy outcomes. A systematic review of several databases was conducted according to PRISMA guidelines. Studies evaluating the use of 3D printing technology in orthopaedic osteotomy procedures in children (aged ≤ 16 years) were included. Spinal and bone tumour surgery were excluded. Data extracted included demographics, disease pathology, target bone, type of technology, imaging modality used, qualitative/quantitative outcomes and follow-up. Articles were further categorized as either ‘pre-operative’ or ‘intra-operative’ applications of the technology. Twenty-two articles fitting the inclusion criteria were included. The reported studies included 212 patients. There were five articles of level of evidence 3 and 17 level 4. A large variety of outcomes were reported with the most commonly used being operating time, fluoroscopic exposure and intra-operative blood loss. A significant difference in operative time, fluoroscopic exposure, blood loss and angular correction was found in the ‘intra-operative’ application group. No significant difference was found in the ‘pre-operative’ category. Despite a relatively low evidence base pool of studies, our aggregate data demonstrate a benefit of 3D printing technology in various deformity correction applications, especially when used in the ‘intra-operative’ setting. Further research including paediatric-specific core outcomes is required to determine the potential benefit of this novel addition. Cite this article: EFORT Open Rev 2021;6:130-138. DOI: 10.1302/2058-5241.6.200092


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Jin Cao ◽  
Huanye Zhu ◽  
Chao Gao

Purpose. Three-dimensional (3D) printing technology has been widely used in orthopedics surgery. However, its efficacy in acetabular fractures remains unclear. The aim of this systematic review and meta-analysis was to examine the effect of using 3D printing technology in the surgery for acetabular fractures. Methods. The systematic review was performed following the PRISMA guidelines. Four major electronic databases were searched (inception to February 2021). Studies were screened using a priori criteria. Data from each study were extracted by two independent reviewers and organized using a standardized table. Data were pooled and presented in forest plots. Results. Thirteen studies were included in the final analysis. Four were prospective randomized trials, and nine used a retrospective comparative design. The patients aged between 32.1 (SD 14.6) years and 51.9 (SD 18.9) years. Based on the pooled analyses, overall, 3D printing-assisted surgery decreased operation time by 38.8 minutes (95% CI: -54.9, -22.8), intraoperative blood loss by 259.7 ml (95% CI: -394.6, -124.9), instrumentation time by 34.1 minutes (95% CI: -49.0, -19.1). Traditional surgery was less likely to achieve good/excellent function of hip (RR, 0.53; 95% CI: 0.34, 0.82) and more likely to have complications than 3D printing-assisted surgery (RR, 1.19; 95% CI: 1.07, 1.33). Conclusions. 3D printing technology demonstrated efficacy in the treatment of acetabular fractures. It may improve surgery-related and clinical outcomes. More prospective studies using a rigorous design (e.g., randomized trial with blinding) are warranted to confirm the long-term effects of 3D printing technology in orthopedics surgeries.


Author(s):  
Mohd Nazri Ahmad ◽  
Ahmad Afiq Tarmeze ◽  
Amir Hamzah Abdul Rasib

Sign in / Sign up

Export Citation Format

Share Document