scholarly journals NAADP‐induced intracellular calcium ion is mediated by the TPCs (two‐pore channels) in hypoxia‐induced pulmonary arterial hypertension

Author(s):  
Wen Hu ◽  
Fei Zhao ◽  
Ling Chen ◽  
Jiamin Ni ◽  
Yongliang Jiang
2020 ◽  
Vol 318 (5) ◽  
pp. C913-C930
Author(s):  
Bingxun Liu ◽  
Liping Zhu ◽  
Ping Yuan ◽  
Glenn Marsboom ◽  
Zhigang Hong ◽  
...  

Whole exome sequencing (WES) was used in the research of familial pulmonary arterial hypertension (FPAH). CAV1 and KCNK3 were found as two novel candidate genes of FPAH. However, few pathogenic genes were identified in idiopathic pulmonary arterial hypertension (IPAH). We conducted WES in 20 unrelated IPAH patients who did not carry the known PAH-pathogenic variants among BMPR2, CAV1, KCNK3, SMAD9, ALK1, and ENG. We found a total of 4,950 variants in 3,534 genes, including 4,444 single-nucleotide polymorphisms and 506 insertions/deletions (InDels). Through the comprehensive and multilevel analysis, we disclosed several novel signaling cascades significantly connected to IPAH, including variants related to cadherin signaling pathway, dilated cardiomyopathy, glucose metabolism, immune response, mucin-type O-glycosylation, phospholipase C (PLC)-activating G protein-coupled receptor (GPCR) signaling pathway, vascular contraction and generation, and voltage-dependent Ca2+ channels. We also conducted validation studies in five mutant genes related to PLC-activating GPCR signaling pathway potentially involved in intracellular calcium regulation through Sanger sequencing for mutation accuracy, qRT-PCR for mRNA stability, immunofluorescence for subcellular localization, Western blotting for protein level, Fura-2 imaging for intracellular calcium, and proliferation analysis for cell function. The validation experiments showed that those variants in CCR5 and C3AR1 significantly increased the rise of intracellular calcium and the variant in CCR5 profoundly enhanced proliferative capacity of human pulmonary artery smooth muscle cells. Thus, our study suggests that multiple genetically affected signaling pathways take effect together to cause the formation of IPAH and the development of right heart failure and may further provide new therapy targets or putative clues for the present treatments such as limited therapeutic effectiveness of Ca2+ channel blockers.


Author(s):  
Jing Liao ◽  
Wenju Lu ◽  
Yuqin Chen ◽  
Xin Duan ◽  
Chenting Zhang ◽  
...  

Emerging studies have reported the mechanosensitive Piezo1 (piezo type mechanosensitive ion channel component 1) plays essential roles in regulating the vascular tone through mechanistic actions on intracellular calcium homeostasis. However, the specific roles of Piezo1 in pulmonary vessels remain incompletely understood. We aim to investigate whether and how Piezo1 regulates the intracellular calcium homeostasis in human pulmonary arterial smooth muscle cells (PASMCs) under normal and pulmonary arterial hypertension (PAH) conditions. Cultured human PASMCs isolated from both control donors and idiopathic PAH patients were used as cell models. Fura-2 based intracellular calcium imaging was performed to measure the intracellular free calcium concentration ([Ca 2+ ] i ). Results showed that activation of Piezo1 by Yoda1 increases [Ca 2+ ] i by inducing both intracellular calcium release from internal calcium stores through the intracellular (intra-) Piezo1 localized at the subcellular organelles, including endoplasmic reticulum/sarcoplasmic reticulum, mitochondria, and nucleus; as well as extracellular calcium influx through the plasma membrane-localized Piezo1 in a mechanism independent of the store-operated calcium entry. Moreover, the Piezo1-mediated increase of [Ca 2+ ] i is linked to increased contraction and proliferation of PASMCs. Yoda1 induces dose-dependent vasocontraction in endothelium-denuded rat intrapulmonary arteries. Significant upregulation and increased activity of Piezo1 were observed in idiopathic PAH-PASMCs versus donor-PASMCs, contributing to the increased [Ca 2+ ] i and excessive proliferation of idiopathic PAH-PASMCs. In summary, Piezo1 mediates the increase of [Ca 2+ ] i by triggering both intracellular calcium release and extracellular influx. The enhanced Piezo1 expression and activity accounts, at least partially, for the abnormally elevated [Ca 2+ ] i and proliferation in idiopathic PAH-PASMCs.


Sign in / Sign up

Export Citation Format

Share Document